cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A152982 Sum of proper divisors of Motzkin number A001006(n).

Original entry on oeis.org

0, 0, 1, 3, 4, 11, 21, 1, 37, 173, 1648, 3610, 1, 25125, 139086, 474576, 284493, 984021, 6536394, 24265740, 18678381, 96214041, 277799337, 1282283505, 2077807083, 1899874619, 19252363864, 44221482398, 1967547359, 29743945411, 1265868629
Offset: 0

Views

Author

Omar E. Pol, Dec 20 2008

Keywords

Examples

			a(6)=21 because A001006(6)=51, having as proper divisors 1, 3 and 17. - _Emeric Deutsch_, Dec 31 2008
		

Crossrefs

Programs

  • Maple
    with(numtheory): M := proc (n) options operator, arrow: sum(binomial(n, 2*k)*binomial(2*k, k)/(k+1), k = 0 .. n) end proc: seq(sigma(M(n))-M(n), n = 0 .. 30); # Emeric Deutsch, Dec 31 2008
  • Mathematica
    mot[0] = 1; mot[n_] := mot[n] = mot[n - 1] + Sum[mot[k] * mot[n - 2 - k], {k, 0, n - 2}]; propDivSum[n_] := DivisorSigma[1, n] - n; Table[propDivSum[mot[n]], {n, 0, 30}] (* Amiram Eldar, Nov 26 2019 *)

Formula

a(n) = A001065(A001006(n)).

Extensions

Extended by Emeric Deutsch, Dec 31 2008

A154349 Sum of proper divisors minus the number of proper divisors of Motzkin number A001006(n).

Original entry on oeis.org

0, 0, 0, 1, 2, 8, 18, 0, 34, 170, 1643, 3603, 0, 25118, 139063, 474559, 284490, 984006, 6536387, 24265729, 18678366, 96214018, 277799290, 1282283434, 2077807072, 1899874612, 19252363859, 44221482383, 1967547352, 29743945396, 1265868622
Offset: 0

Views

Author

Omar E. Pol, Jan 07 2009

Keywords

Comments

Note that, if a(n) != 0 then Motzkin number A001006(n) is a composite number (A002808), otherwise A001006(n) is a noncomposite number (A008578). See A152770.

Crossrefs

Programs

  • Maple
    with(numtheory): M := proc (n) options operator, arrow: (sum((-1)^j*binomial(n+1, j)*binomial(2*n-3*j, n), j = 0 .. floor((1/3)*n)))/(n+1) end proc: seq(sigma(M(n))-M(n)-tau(M(n))+1, n = 0 .. 30); # Emeric Deutsch, Jan 12 2009
  • Mathematica
    mot[0] = 1; mot[n_] := mot[n] = mot[n - 1] + Sum[mot[k] * mot[n - 2 - k], {k, 0, n - 2}]; diff[n_] := DivisorSigma[1, n] - DivisorSigma[0, n] - n + 1; Table[diff[mot[n]], {n, 0, 30}] (* Amiram Eldar, Nov 26 2019 *)

Formula

a(n) = A001065(A001006(n)) - A032741(A001006(n)) = A152770(A001006(n)).

Extensions

Extended by Emeric Deutsch, Jan 12 2009
Showing 1-2 of 2 results.