A153006 Toothpick sequence starting at the outside corner of an infinite square from which protrudes a half toothpick.
0, 1, 3, 6, 9, 13, 20, 28, 33, 37, 44, 53, 63, 78, 100, 120, 129, 133, 140, 149, 159, 174, 196, 217, 231, 246, 269, 297, 332, 384, 448, 496, 513, 517, 524, 533, 543, 558, 580, 601, 615, 630, 653, 681, 716, 768, 832, 881, 903, 918, 941
Offset: 0
Keywords
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..16387
- David Applegate, The movie version
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- Omar E. Pol, Illustration of initial terms
- Omar E. Pol, Illustration of A153006(31) = 496
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index entries for sequences related to toothpick sequences
- Index entries for sequences related to cellular automata
Crossrefs
Programs
-
Maple
G:=x*((1 + x)/(1 - x)) * mul( (1 + x^(2^n-1) + 2*x^(2^n)), n=1..20); # N. J. A. Sloane, May 20 2009
Formula
G.f.: x*((1 + x)/(1 - x)) * Product_{n >= 1} (1 + x^(2^n-1) + 2*x^(2^n)). - N. J. A. Sloane, May 20 2009
Extensions
Edited by N. J. A. Sloane, Dec 19 2008
Comments