cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A215097 a(n) = n^3 - a(n-2) for n >= 2 and a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 8, 26, 56, 99, 160, 244, 352, 485, 648, 846, 1080, 1351, 1664, 2024, 2432, 2889, 3400, 3970, 4600, 5291, 6048, 6876, 7776, 8749, 9800, 10934, 12152, 13455, 14848, 16336, 17920, 19601, 21384, 23274, 25272, 27379, 29600, 31940, 34400, 36981, 39688, 42526
Offset: 0

Views

Author

Alex Ratushnyak, Aug 03 2012

Keywords

Crossrefs

Cf. A000217 (n^2 - a(n-1)).
Cf. A125577 (n^2 - a(n-1) with a(0)=1).
Cf. A011934 (n^3 - a(n-1)).
Cf. A153026 (n^3 - a(n-1) with a(1)=0).
Cf. A194274 (n^2 - a(n-2)).
Cf. A187093 (n^2 - a(n-2) with a(0)=a(1)=1, a(-1)=0).
Cf. A107386 ((n-2)^2 - a(n-1) with a(0)=0, a(1)=a(2)=1, a(3)=2).
Cf. A206481 ((n-1)^3 - a(n-2)).

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == n^3 - a[n - 2]}, a[n], {n, 0, 43}] (* Bruno Berselli, Aug 07 2012 *)
  • Python
    prpr = 0
    prev = 1
    for n in range(2,77):
        print(prpr, end=',')
        curr = n*n*n - prpr
        prpr = prev
        prev = curr

Formula

G.f.: (x+4*x^2+x^3)/((-1+x)^4*(1+x^2)). - David Scambler, Aug 06 2012
a(n) = (n*(n^2-3)-(1-(-1)^n)*i^(n+1))/2, where i=sqrt(-1). - Bruno Berselli, Aug 07 2012
Showing 1-1 of 1 results.