A153036 Integer parts of the full Stern-Brocot tree.
0, 1, 0, 2, 0, 0, 1, 3, 0, 0, 0, 0, 1, 1, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Examples
a(1): 1; a(2..3): 1x0, 2; a(4..7): 2x0, 1x1, 3; a(8..15): 4x0, 2x1, 1x2, 4; a(16..31): 8x0, 4x1, 2x2, 1x3, 5; a(32..63): 16x0, 8x1, 4x2, 2x3, 1x4, 6; a(64..127): 32x0, 16x1, 8x2, 4x3, 2x4, 1x5, 7; a(128..255): 64x0, 32x1, 16x2, 8x3, 4x4, 2x5, 1x6, 8; a(256..511): 128x0, 64x1, 32x2, 16x3, 8x4, 4x5, 2x6, 1x7, 9.
Links
- Jon Maiga, Computer-generated formulas for A153036, Sequence Machine.
- N. J. A. Sloane, Stern-Brocot or Farey Tree
- Index entries for sequences related to Stern's sequences
Crossrefs
Formula
a(n) = if n=2^k-1 then k else Log2(n)-1-Log2(2^(Log2(n)+1)-(n+1)), where Log2=A000523.
From Andrey Zabolotskiy, Oct 07 2021: (Start)
Formulas discovered by Sequence Machine (and also essentially by Kevin Ryde):
Extensions
a(0) = 0 added by Andrey Zabolotskiy, Jul 23 2020