cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153038 Denominators of the fixed point a=(a_1,a_2,...) of the transformation x'= fix(x) where fix(x)n = Sum{d|n} d x_d, i.e., fix(a)=a.

Original entry on oeis.org

1, -1, -2, 3, -4, 2, -6, -21, 16, 4, -10, -6, -12, 6, 8, 315, -16, -16, -18, -12, 12, 10, -22, 42, 96, 12, -416, -18, -28, -8, -30, -9765, 20, 16, 24, 48, -36, 18, 24, 84, -40, -12, -42, -30, -64, 22, -46, -630, 288, -96, 32, -36, -52, 416, 40, 126, 36, 28, -58, 24, -60, 30, -96, 615195, 48, -20, -66, -48, 44, -24, -70, -336, -72, 36
Offset: 1

Views

Author

Natascha Neumaerker (naneumae(AT)math.uni-bielefeld.de), Dec 17 2008

Keywords

Comments

The absolute values are Pazderski's multiplicative psi(n). - R. J. Mathar, Apr 03 2012

Programs

  • Maple
    A153038 := proc(n)
            local f,a,p,e;
            if n = 1 then
                    1;
            else
                    a := 1 ;
                    for f in ifactors(n)[2] do
                            p := op(1,f) ;
                            e := op(2,f) ;
                            a := a*mul(1-p^s,s=1..e) ;
                    end do:
                    return a ;
            end if;
    end proc: # R. J. Mathar, Apr 03 2012
  • Mathematica
    a[1] = 1; a[n_] := (x = 1; Do[p = f[[1]]; e = f[[2]]; x = x*Product[1 - p^s, {s, 1, e}], {f, FactorInteger[n]}]; x); Table[a[n], {n, 1, 46}] (* Jean-François Alcover, May 15 2012, after R. J. Mathar *)
  • PARI
    a(n)=my(f=factor(n));prod(k=1,#f[,1],prod(j=1,f[k,2], 1-f[k,1]^j)) \\ Charles R Greathouse IV, Sep 18 2012

Formula

For n with prime factorization n = p_1^{r_1}*...*p_s^{r_s} the n-th term is a(n) = Product_{k=1..s} Product_{j=1..r_k} (1 - p_k^j).
G.f.: The Dirichlet series for 1/a(n) is Product_{j>= 1} 1/zeta(s+j) = Product_{p prime} Product_{j>= 1} (1 - 1/p^(s+j)) where zeta(s) is Riemann's zeta function.

Extensions

More terms from Antti Karttunen, Oct 09 2018