A153066 Continued fraction for L(2, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3.
0, 1, 3, 1, 1, 2, 1, 17, 1, 10, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 4, 1, 1, 1, 10, 1, 2, 1, 1, 1, 6, 1, 12, 2, 14, 1, 1, 1, 3, 3, 1, 1, 3, 1, 1, 12, 3, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 4, 2, 1, 12, 140, 1, 6, 3, 3, 1, 2, 1100, 4, 1, 1, 2, 1
Offset: 0
Examples
L(2, chi3) = 0.781302412896486296867187429624092... = A086724 = = [0; 1, 3, 1, 1, 2, 1, 17, 1, 10, 1, 1, 5, 1, 1, 2, 1, ...]
Programs
-
Mathematica
nmax = 1000; ContinuedFraction[(Zeta[2, 1/3] - Zeta[2, 2/3])/9, nmax + 1]
-
PARI
contfrac(zetahurwitz(2,1/3)/9 - zetahurwitz(2,2/3)/9) \\ Charles R Greathouse IV, Jan 31 2018
Formula
chi3(k) = Kronecker(-3, k); chi3(k) is 0, 1, -1 when k reduced modulo 3 is 0, 1, 2, respectively; chi3 is A102283.
Series: L(2, chi3) = sum_{k=1..infinity} chi3(k) k^{-2} = 1 - 1/2^2 + 1/4^2 - 1/5^2 + 1/7^2 - 1/8^2 + 1/10^2 - 1/11^2 + ...