A153075 Increasing sequence of prime numbers such that the sum of any 3 consecutive terms is a prime and sum of any 5 consecutive terms is a prime also.
3, 5, 11, 13, 29, 31, 43, 83, 97, 113, 127, 149, 157, 173, 191, 193, 223, 311, 373, 467, 487, 499, 557, 607, 647, 653, 673, 677, 739, 787, 821, 829, 881, 883, 977, 991, 1051, 1217, 1291, 1373, 1427, 1429, 1471, 1583, 1597, 1607, 1609, 1693, 1811, 1877, 1951
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A:= 3,5,11,13: for n from 1 to 100 do s:= A[-1]+A[-2]; t:= s + A[-3]+A[-4]; for x from A[-1]+2 by 2 while not(isprime(x)) or not(isprime(x+s)) or not(isprime(x+t)) do od: A:= A, x; od: A; # Robert Israel, Mar 09 2017
-
Mathematica
a=3; b=5; c=11; d=13; lst={a, b, c, d}; Do[z=a+b+c+d+n; y=c+d+n; If[PrimeQ[z]&&n>b&&PrimeQ[n]&&PrimeQ[y], AppendTo[lst, n]; a=b; b=c; c=d; d=n], {n, 0, 8!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 17 2008 *)