A153154 Permutation of natural numbers: A059893-conjugate of A006068.
0, 1, 3, 2, 7, 4, 5, 6, 15, 8, 9, 14, 11, 12, 13, 10, 31, 16, 17, 30, 19, 28, 29, 18, 23, 24, 25, 22, 27, 20, 21, 26, 63, 32, 33, 62, 35, 60, 61, 34, 39, 56, 57, 38, 59, 36, 37, 58, 47, 48, 49, 46, 51, 44, 45, 50, 55, 40, 41, 54, 43, 52, 53, 42, 127, 64, 65, 126, 67, 124
Offset: 0
Links
Programs
-
R
maxn <- 63 # by choice a <- c(1,3,2) # for(n in 2:maxn){ a[2*n] <- 2*a[n] + 1 if(n%%2==0) a[2*n+1] <- 2*a[n+1] else a[2*n+1] <- 2*a[n-1] } (a <- c(0,a)) # Yosu Yurramendi, Feb 26 2020
-
R
# Given n, compute a(n) by taking into account the binary representation of n maxblock <- 8 # by choice a <- c(1, 3, 2) for(n in 4:2^maxblock){ ones <- which(as.integer(intToBits(n)) == 1) nbit <- as.integer(intToBits(n))[1:tail(ones, n = 1)] anbit <- nbit for(i in 2:(length(anbit) - 1)) anbit[i] <- bitwXor(anbit[i], anbit[i - 1]) # ?bitwXor anbit[0:(length(anbit) - 1)] <- 1 - anbit[0:(length(anbit) - 1)] a <- c(a, sum(anbit*2^(0:(length(anbit) - 1)))) } (a <- c(0, a)) # Yosu Yurramendi, Oct 04 2021
Formula
From Yosu Yurramendi, Feb 26 2020: (Start)
a(1) = 1, for all n > 0 a(2*n) = 2*a(n) + 1, a(2*n+1) = 2*a(A065190(n)).
a(1) = 1, a(2) = 3, a(3) = 2, for all n > 1 a(2*n) = 2*a(n) + 1, and if n even a(2*n+1) = 2*a(n+1), else a(2*n+1) = 2*a(n-1).
Comments