A153225 Numbers k such that the string k modulo 100 is found at position k in the decimal digits of Pi.
1, 102, 104, 189, 193, 256, 302, 407, 467, 475, 503, 594, 702, 712, 751, 804, 881, 905, 978, 998, 1005, 1053, 1104, 1107, 1154, 1275, 1303, 1306, 1307, 1315, 1421, 1502, 1600, 1604, 1690, 1694, 1706, 1802, 1860, 1904, 1907, 1908, 2006, 2025, 2105, 2146, 2208
Offset: 1
Examples
a(4) = 189 because 89 occurs at offset 189 after the decimal in the digits of Pi.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Python
from sympy import S # download https://stuff.mit.edu/afs/sipb/contrib/pi/pi-billion.txt, then #with open('pi-billion.txt', 'r') as f: pi_digits = f.readline() pi_digits = str(S.Pi.n(3*10**5+2))[:-2] # alternative to above pi_digits = pi_digits.replace(".", "") def ispal(s): return s == s[::-1] def agen(): for k in range(len(pi_digits)): sk = str(k%100) if sk == pi_digits[k:k+len(sk)]: yield k g = agen() print([next(g) for n in range(1, 48)]) # Michael S. Branicky, Jan 30 2022
Extensions
a(47) and beyond from Michael S. Branicky, Jan 30 2022