cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153280 Eigensequence of triangle A153279.

Original entry on oeis.org

1, 3, 15, 165, 4785, 397155, 97302975, 71128474725, 155700231173025, 1021860617188563075, 20115326249356864131375, 1187830130350772183821825125, 210422919761508941591852499068625, 111827787746815596446398867662527275875
Offset: 0

Views

Author

Gary W. Adamson, Dec 23 2008

Keywords

Examples

			Triangle M =
1;
1;
2, 1;
4, 2, 3;
8, 4, 6, 9;
16, 8, 12, 18, 27;
...
M^n rapidly converges to this sequence with sufficiently large n.
a(0) = 1, a(1) = 1*(2+3^0) = 3, a(2) = 3*(2+3^1) = 15, a(3) = 15*(2+3^2) = 165, a(4) = 165*(2+3^3) = 4785, ... - _Philippe Deléham_, Sep 27 2014
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n+1] == a[n]*(2 + 3^n), a[0] == 1}, a, {n, 0, 15}] (* Vaclav Kotesovec, Jan 22 2023 *)
    Table[2^n * QPochhammer[-1/2, 3, n], {n, 0, 15}] (* Vaclav Kotesovec, Jan 22 2023 *)
    nxt[{n_,a_}]:={n+1,a(2+3^n)}; NestList[nxt,{0,1},20][[;;,2]] (* Harvey P. Dale, Mar 28 2024 *)

Formula

Given triangle A153279, let a new triangle = M shifted down one row, inserting a "1" in (0,0). Triangle equals lim_{n->oo} M^n.
a(n+1) = a(n)*(2+3^n), a(0) = 1. - Philippe Deléham, Sep 27 2014
a(n) ~ c * 3^(n*(n-1)/2), where c = QPochhammer(-2, 1/3) = 6.80914656805984199... - Vaclav Kotesovec, Jan 22 2023

Extensions

More terms from Philippe Deléham, Sep 27 2014