A153282 Numbers k such that 3*k + 4 is not prime.
0, 2, 4, 6, 7, 8, 10, 12, 14, 15, 16, 17, 18, 20, 22, 24, 26, 27, 28, 29, 30, 32, 34, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 64, 66, 67, 68, 70, 71, 72, 74, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 92, 94, 95, 96, 97, 98, 99, 100
Offset: 1
Examples
Distribution of the odd terms in the following triangular array: *; *,7; *,*,15; *,*,*,*; *,17.*,*,39; *,*,29,*,*,55; *,*, *,*,*,*, *; *,27,*,*,61,*,*,95; *,*,43,*,*,81,*,*,119; *,*, *,*,*,*, *,*, *, *; *,37,*,*,83,*,*,129,*,*,175; *,*,57,*,*,107,*,*,157,*,*,207; etc. where * marks the non-integer values of (4*h*k + 2*k + 2*h - 3)/3 with h >= k >= 1. - _Vincenzo Librandi_, Jan 17 2013
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A034936.
Programs
-
Magma
[n: n in [0..150] | not IsPrime(3*n + 4)]; // Vincenzo Librandi, Jan 12 2013
-
Mathematica
Select[Range[0, 200], !PrimeQ[3*# + 4]&] (* Vincenzo Librandi, Jan 12 2013 *)
Extensions
Edited (and terms confirmed) by N. J. A. Sloane, Jan 18 2009
Comments