cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A153293 G.f.: A(x) = F(x*F(x)^3) = F(F(x)-1) where F(x) = 1 + x*F(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 6, 42, 317, 2508, 20517, 172180, 1474689, 12843768, 113444721, 1014062898, 9158151426, 83449247979, 766340138037, 7085966319858, 65919413472834, 616559331247512, 5794778945023698, 54700034442193302, 518375457403431600
Offset: 0

Views

Author

Paul D. Hanna, Jan 14 2009

Keywords

Examples

			G.f.: A(x) = F(x*F(x)^3) = 1 + x + 6*x^2 + 42*x^3 + 317*x^4 +... where
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 + 7752*x^6 +...
		

Crossrefs

Programs

  • Maple
    S:= (1/2)*GAMMA(n+1/3)*GAMMA(n+2/3)*hypergeom([4/3, 5/3, -n+1], [5/2, 2*n+2], -27/4)*27^n*sqrt(3)/(Pi*GAMMA(2*n+2)):
    1, seq(simplify(S),n=1..40); # Robert Israel, Dec 26 2017
  • Mathematica
    F[x_] = 1 + InverseSeries[x/(1 + x)^3 + O[x]^21];
    CoefficientList[F[F[x] - 1], x] (* Jean-François Alcover, Nov 02 2019 *)
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+1,k)/(3*k+1)*binomial(3*(n-k)+3*k,n-k)*3*k/(3*(n-k)+3*k)))}

Formula

a(n) = Sum_{k=0..n} C(3k+1,k)/(3k+1) * C(3n,n-k)*k/n for n>0 with a(0)=1.
G.f. satisfies: A(x) = 1 + x*F(x)^3*A(x)^3 where F(x) is the g.f. of A001764.
G.f. satisfies: A(x/G(x)) = F(x*G(x)^2) = F(G(x)-1) where G(x) = F(x/G(x)) is the g.f. of A000108 and F(x) is the g.f. of A001764.
a(n) = sqrt(3)*Gamma(n+2/3)*Gamma(n+1/3)*hypergeom([4/3, 5/3, -n+1], [5/2, 2*n+2], -27/4)*27^n/(2*Pi*(n+1)!) for n >= 1. - Robert Israel, Dec 26 2017

A153291 G.f.: A(x) = F(x*F(x)) where F(x) = 1 + x*F(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 4, 21, 124, 782, 5145, 34873, 241682, 1704240, 12186900, 88162753, 644058237, 4744733614, 35210349041, 262976828766, 1975324849238, 14913200362138, 113107780322778, 861417424802187, 6585224638006020, 50515048389265713
Offset: 0

Views

Author

Paul D. Hanna, Jan 14 2009

Keywords

Examples

			G.f.: A(x) = F(x*F(x)) = 1 + x + 4*x^2 + 21*x^3 + 124*x^4 +... where
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 + 7752*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+1,k)/(3*k+1)*binomial(3*(n-k)+k,n-k)*k/(3*(n-k)+k)))}

Formula

a(n) = Sum_{k=0..n} C(3k+1,k)/(3k+1) * C(3n-2k,n-k)*k/(3n-2k) for n>0 with a(0)=1.
G.f. satisfies: A(x) = 1 + x*F(x)*A(x)^3 where F(x) is the g.f. of A001764.
G.f. satisfies: A(x/G(x)) = F(x) where G(x) = F(x/G(x)) is the g.f. of A000108 and F(x) is the g.f. of A001764.
Showing 1-2 of 2 results.