cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153294 G.f.: A(x) = F(x*F(x)^2) = F(F(x)-1) where F(x) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan).

Original entry on oeis.org

1, 1, 4, 18, 86, 427, 2180, 11373, 60380, 325259, 1773842, 9776637, 54380144, 304905223, 1721650832, 9782051362, 55888463214, 320898932595, 1850762866662, 10717217871255, 62287285235230, 363212668363520, 2124430957852380
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2009

Keywords

Comments

Ignoring a(0), the series reversal gives A030267 with alternating signs: 1, -4, 14, -46, 145, -444, ... - Vladimir Reshetnikov, Aug 03 2019

Examples

			G.f.: A(x) = F(x*F(x)^2) = 1 + x + 4*x^2 + 18*x^3 + 86*x^4 +... where
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
A(x)^2 = 1 + 2*x + 9*x^2 + 44*x^3 + 224*x^4 + 1170*x^5 + 6226*x^6 +...
F(x)^2*A(x)^2 = 1 + 4*x + 18*x^2 + 86*x^3 + 427*x^4 + 2180*x^5 +...
From _Peter Bala_, Jul 21 2015: (Start)
Let B(x) = (A(x) - 1)/x = Sum_{n >= 0} a(n+1)*x^n. Then 1 + x*B'(x)/B (x)  = 1 + 4*x + 20*x^2 + 106*x^3 + ... is the o.g.f. for A243585.
x*sqrt(B(x)) = x + 2*x^2 + 7*x^3 + 29*x^4 + ... is the o.g.f for A007582. (End)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := 2^(n-1) (2n-1)!! ((Hypergeometric2F1[-1/2, -n-1, n, -4] - 1)/(n+1)! + 2 Hypergeometric2F1[1/2, -n, n+1, -4]/(n n!)); Table[a[n], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 07 2015 *)
    Flatten[{1, Table[Sum[Binomial[2*k + 1, k]/(2*k + 1)*Binomial[2*(n-k) + 2*k, n-k]*2*k/(2*(n-k) + 2*k), {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Nov 07 2015 *)
    A153294[0] := 1; A153294[n_] := (A243585[n] - A007856[n+1])/n;
    Table[A153294[n], {n, 0, 22}] (* Peter Luschny, Aug 04 2019 *)
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(2*k+1,k)/(2*k+1)*binomial(2*(n-k)+2*k,n-k)*2*k/(2*(n-k)+2*k)))}

Formula

a(n) = Sum_{k=0..n} C(2k+1,k)/(2k+1) * C(2n,n-k)*k/n for n>0 with a(0)=1.
G.f.: A(x) = [1 - sqrt(5 - 4*F(x))]/(2*F(x)-2) where F(x) = (1-sqrt(1-4x))/(2x).
G.f. satisfies: A(x) = 1 + x*F(x)^2*A(x)^2 where F(x) is the g.f. of A000108.
G.f. satisfies: A(x*G(x)) = F(x*G(x)^3) = F(G(x)-1) where G(x) = F(x*G(x)) is the g.f. of A001764 and F(x) is the g.f. of A000108.
For n > 0, a(n) = 2^(n-1)*(2*n-1)!!*((hypergeom([-1/2,-n-1], [n], -4) - 1)/(n+1)! + 2*hypergeom([1/2,-n], [n+1], -4)/(n*n!)). - Vladimir Reshetnikov, Nov 07 2015
a(n) ~ 5^(2*n + 1/2) / (sqrt(3*Pi) * n^(3/2) * 4^n). - Vaclav Kotesovec, Nov 07 2015
a(n) = (A243585(n) - A007856(n+1)) / n for n >= 1. - Peter Luschny, Aug 04 2019