cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153316 Numerators of continued fraction convergents to sqrt(5/4).

Original entry on oeis.org

1, 9, 19, 161, 341, 2889, 6119, 51841, 109801, 930249, 1970299, 16692641, 35355581, 299537289, 634430159, 5374978561, 11384387281, 96450076809, 204284540899, 1730726404001, 3665737348901, 31056625195209, 65778987739319, 557288527109761, 1180356041958841, 10000136862780489
Offset: 0

Views

Author

Charlie Marion, Jan 07 2009

Keywords

Comments

In general, denominators, a(k,n) and numerators, b(k,n), of continued fraction convergents to sqrt((k+1)/k) may be found as follows:
a(k,0) = 1, a(k,1) = 2k; for n > 0, a(k,2n) = 2*a(k,2n-1) + a(k,2n-2)
and a(k,2n+1) = (2k)*a(k,2n) + a(k,2n-1);
b(k,0) = 1, b(k,1) = 2k+1; for n > 0, b(k,2n) = 2*b(k,2n-1) + b(k,2n-2)
and b(k,2n+1) = (2k)*b(k,2n) + b(k,2n-1).
For example, the convergents to sqrt(4/3) start 1/1, 9/8, 19/17, 161/144, 341/305.
In general, if a(k,n) and b(k,n) are the denominators and numerators, respectively, of continued fraction convergents to sqrt((k+1)/k) as defined above, then
k*a(k,2n)^2 - a(k,2n-1)*a(k,2n+1) = k = k*a(k,2n-2)*a(k,2n) - a(k,2n-1)^2 and
b(k,2n-1)*b(k,2n+1) - k*b(k,2n)^2 = k+1 = b(k,2n-1)^2 - k*b(k,2n-2)*b(k,2n);
for example, if k=4 and n=3, then b(4,n)=a(n) and
4*a(4,6)^2 - a(4,5)*a(4,7) = 4*5473^2 - 2584*46368 = 4;
4*a(4,4)*a(4,6) - a(4,5)^2 = 4*305*5473 - 2584^2 = 4;
b(4,5)*b(4,7) - 4*b(4,6)^2 = 2889*51841 - 4*6119^2 = 5;
b(4,5)^2 - 4*b(4,4)*b(4,6) = 2889^2 - 4*341*6119 = 5.

Examples

			The initial convergents are 1, 9/8, 19/17, 161/144, 341/305, 2889/2584, 6119/5473, 1841/46368, 109801/98209, 930249/832040, 1970299/1762289.
		

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[5/4], 30]] (* Paolo Xausa, Jan 16 2025 *)
  • PARI
    Vec((1+9*x+x^2-x^3)/((1+4*x-x^2)*(1-4*x-x^2)) + O(x^30)) \\ Colin Barker, Mar 27 2016

Formula

For n > 0, a(2*n) = 2*a(2*n-1) + a(2*n-2) and a(2*n+1) = 8*a(2*n) + a(2*n-1).
G.f.: (1 + 9*x + x^2 - x^3) / ((1 + 4*x - x^2)*(1 - 4*x - x^2)). - Colin Barker, Jan 01 2012
From Colin Barker, Mar 27 2016: (Start)
a(n) = ((5*(-2+sqrt(5))^n - 2*sqrt(5)*(-2+sqrt(5))^n + 15*(2+sqrt(5))^n + 6*sqrt(5)*(2+sqrt(5))^n + 3*(2-sqrt(5))^n*(-5+2*sqrt(5)) - (-2-sqrt(5))^n*(5+2*sqrt(5))))/(8*sqrt(5)).
a(n) = 18*a(n-2) - a(n-4) for n > 3. (End)
a(n) = (3 - (-1)^n)*Lucas(3*(n + 1))/8. - Ehren Metcalfe, Apr 04 2019