A153316 Numerators of continued fraction convergents to sqrt(5/4).
1, 9, 19, 161, 341, 2889, 6119, 51841, 109801, 930249, 1970299, 16692641, 35355581, 299537289, 634430159, 5374978561, 11384387281, 96450076809, 204284540899, 1730726404001, 3665737348901, 31056625195209, 65778987739319, 557288527109761, 1180356041958841, 10000136862780489
Offset: 0
Examples
The initial convergents are 1, 9/8, 19/17, 161/144, 341/305, 2889/2584, 6119/5473, 1841/46368, 109801/98209, 930249/832040, 1970299/1762289.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,18,0,-1).
Programs
-
Mathematica
Numerator[Convergents[Sqrt[5/4], 30]] (* Paolo Xausa, Jan 16 2025 *)
-
PARI
Vec((1+9*x+x^2-x^3)/((1+4*x-x^2)*(1-4*x-x^2)) + O(x^30)) \\ Colin Barker, Mar 27 2016
Formula
For n > 0, a(2*n) = 2*a(2*n-1) + a(2*n-2) and a(2*n+1) = 8*a(2*n) + a(2*n-1).
G.f.: (1 + 9*x + x^2 - x^3) / ((1 + 4*x - x^2)*(1 - 4*x - x^2)). - Colin Barker, Jan 01 2012
From Colin Barker, Mar 27 2016: (Start)
a(n) = ((5*(-2+sqrt(5))^n - 2*sqrt(5)*(-2+sqrt(5))^n + 15*(2+sqrt(5))^n + 6*sqrt(5)*(2+sqrt(5))^n + 3*(2-sqrt(5))^n*(-5+2*sqrt(5)) - (-2-sqrt(5))^n*(5+2*sqrt(5))))/(8*sqrt(5)).
a(n) = 18*a(n-2) - a(n-4) for n > 3. (End)
a(n) = (3 - (-1)^n)*Lucas(3*(n + 1))/8. - Ehren Metcalfe, Apr 04 2019
Comments