A153335 Number of zig-zag paths from top to bottom of an n X n square whose color is not that of the top right corner.
0, 1, 2, 8, 18, 52, 116, 296, 650, 1556, 3372, 7768, 16660, 37416, 79592, 175568, 371034, 807604, 1697660, 3657464, 7654460, 16357496, 34106712, 72407728, 150499908, 317777032, 658707896, 1384524656, 2863150440, 5994736336
Offset: 1
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..1000
- Joseph Myers, BMO 2008--2009 Round 1 Problem 1---Generalisation
Programs
-
Mathematica
Table[If[Mod[n,2]==0, (n+1)*2^(n-2)-2(n-1) Binomial[n-2,(n-2)/2], (n+1)*2^(n-2)-(n) Binomial[n-1,(n-1)/2]],{n,1,30}] (* Indranil Ghosh, Feb 19 2017 *)
-
PARI
a(n) = if (n % 2, (n+1)*2^(n-2) - n*binomial(n-1,(n-1)/2), (n+1)*2^(n-2) - 2*(n-1)*binomial(n-2,(n-2)/2)); \\ Michel Marcus, Feb 19 2017
-
Python
import math def C(n, r): f=math.factorial return f(n)/f(r)/f(n-r) def A153335(n): if n%2==0: return str(int((n+1)*2**(n-2)-2*(n-1)*C(n-2, (n-2)/2))) else: return str(int((n+1)*2**(n-2)-(n)*C(n-1, (n-1)/2))) # Indranil Ghosh, Feb 19 2017
Formula
a(n) = (n+1)2^(n-2) - 2(n-1)binomial(n-2,(n-2)/2) for n even, a(n) = (n+1)2^(n-2) - (n)binomial(n-1,(n-1)/2) for n odd.