A153336 Number of zig-zag paths from top to bottom of a 2n by 2n square whose color is that of the top right corner.
1, 8, 52, 296, 1556, 7768, 37416, 175568, 807604, 3657464, 16357496, 72407728, 317777032, 1384524656, 5994736336, 25816193952, 110652549620, 472302724408, 2008499580504, 8513063608304, 35975584631128, 151621915797840
Offset: 1
Examples
a(3) = (2*3 + 1)*2 ^ (2*3 - 2) - 2*(2*3 - 1) * binomial(2*3 - 2, 3 - 1) = 52. - _Indranil Ghosh_, Feb 19 2017
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..1000
- Joseph Myers, BMO 2008--2009 Round 1 Problem 1---Generalisation
Programs
-
Mathematica
Table[(2n+1) 2^(2n-2)-2(2n-1) Binomial[2n-2,n-1],{n,1,22}] (* Indranil Ghosh, Feb 19 2017 *)
-
PARI
a(n) = (2*n+1)*2^(2*n-2) - 2*(2*n-1)*binomial(2*n-2, n-1); \\ Michel Marcus, Feb 19 2017
-
Python
import math def C(n,r): f=math.factorial return f(n)/f(r)/f(n-r) def A153336(n): return str((2*n+1)*2**(2*n-2)-2*(2*n-1)*C(2*n-2,n-1)) # Indranil Ghosh, Feb 19 2017
Formula
a(n) = (2n+1)2^(2n-2) - 2(2n-1)binomial(2n-2,n-1).