A153338 Number of zig-zag paths from top to bottom of a 2n-1 by 2n-1 square whose color is not that of the top right corner.
0, 2, 18, 116, 650, 3372, 16660, 79592, 371034, 1697660, 7654460, 34106712, 150499908, 658707896, 2863150440, 12371226064, 53178791162, 227561427612, 969890051884, 4119092850680, 17438036501676, 73611934643368, 309935825654168, 1301878616066736
Offset: 1
Examples
a(3) = 3*2 ^ (2*3 - 2) - (2*3 - 1) * binomial(2*3 - 2, 3 - 1) = 18. - _Indranil Ghosh_, Feb 19 2017
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..1000
- Joseph Myers, BMO 2008--2009 Round 1 Problem 1---Generalisation
Programs
-
Magma
[(n)*2^(2*n-2)-(2*n-1)*Binomial(2*n-2, n-1): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
-
Mathematica
Table[n 2^(2 n - 2) - (2 n - 1) Binomial[2 n - 2, n - 1], {n, 22}] (* Michael De Vlieger, Sep 17 2015 *)
-
Python
import math def C(n,r): f=math.factorial return f(n)/f(r)/f(n-r) def A153338(n): return str(n*2**(2*n-2)-(2*n-1)*C(2*n-2,n-1)) # Indranil Ghosh, Feb 19 2017
Formula
a(n) = n*2^(2*n-2) - (2*n-1)*binomial(2*n-2,n-1).
4^n*(n+1)-C(2*n,n)*(2*n+1) = Sum_{k=1..n} C(2*(n-k),n-k)*C(2*k,k)*k*(H(k)-H(n-k)) for n >= 0; H(n) denote the harmonic numbers. This identity is attributed to Maillard. - Peter Luschny, Sep 17 2015
Extensions
a(23)-a(24) from Vincenzo Librandi, Sep 18 2015