cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153359 Scaled coefficients of the M. O. Rubinstein polynomials.

Original entry on oeis.org

1, -1, 1, -2, -1, 3, -2, -1, 2, 1, -152, -78, 125, 90, 15, -216, -114, 157, 135, 35, 3, -41424, -22444, 27552, 26551, 8505, 1197, 63, -66000, -36620, 40976, 42917, 15652, 2814, 252, 9, -13037952, -7390832, 7652084, 8557940, 3414775, 714840, 83790, 5220, 135, -21995904
Offset: 0

Views

Author

Peter Luschny, Dec 24 2008

Keywords

Comments

The polynomials alpha_{k}(s) are defined in formula (1.4) in the paper cited below. The coefficients are in ascending order.

Examples

			alpha_{0}(t) = 1 / 1;
alpha_{1}(t) = (-1 + t) / 2;
alpha_{2}(t) = (-2 - t + 3t^2) / 24;
alpha_{3}(t) = (-2 - t + 2t^2 + t^3) / 48;
		

Crossrefs

Cf. A053657.

Programs

  • Mathematica
    alpha[0, ] = 1; alpha[k, s_] := (s - 1)/(k + 1) - Sum[((j - (s - 1)*(k - j))/(k - j + 1))*alpha[j, s]/(k), {j, 1, k - 1}] // Expand;
    a53657[n_] := Product[p^Sum[Floor[(n - 1)/((p - 1) p^k)], {k, 0, n}], {p, Prime[Range[n]]}];
    row[k_] := CoefficientList[alpha[k, t]*a53657[k + 1], t];
    Table[row[k], {k, 0, 7}] // Flatten (* Jean-François Alcover, Jul 19 2018 *)

Formula

The coefficients of the polynomials alpha_{k}(s)*A053657(k) where alpha_{0}(s) = 1 and alpha_{k+1}(s) = (s-1)/(k+2)-sum(j=1..k,((j-(s-1)*(k-j+1))/(k-j+2))*alpha_{j}(s))/(k+1).

Extensions

More terms from Giovanni Resta, Jul 19 2018