A153394 G.f.: A(x) = F(x*G(x)^2)^3 where F(x) = G(x*F(x)) = 1 + x*F(x)^3 is the g.f. of A001764 and G(x) = F(x/G(x)) = 1 + x*G(x)^2 is the g.f. of A000108 (Catalan).
1, 3, 18, 118, 813, 5799, 42470, 317637, 2416671, 18649874, 145655292, 1149199212, 9146686605, 73354982763, 592217363334, 4809250320023, 39258457746069, 321964620209940, 2651536017682988, 21919266484180533, 181820251665093357
Offset: 0
Keywords
Examples
G.f.: A(x) = F(x*G(x)^2)^3 = 1 + 3*x + 18*x^2 + 118*x^3 + 813*x^4 +... where F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +... F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +... F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 +... G(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +... G(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
Programs
-
PARI
{a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+3,k)/(k+1)*binomial(2*n,n-k)*k/n))}
Formula
a(n) = Sum_{k=0..n} C(3k+3,k)/(k+1) * C(2n,n-k)*k/n for n>0 with a(0)=1.
G.f. satisfies: A(x*F(x)) = F(x*F(x)^3)^3 = F(F(x)-1)^3 where F(x) is the g.f. of A001764.