A153452 a(1) = 1; if n > 1, then a(n) = Sum_{prime q |n} a(n*q' /q), where q' = prevprime(q) for q>2 and 2' = 1.
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 3, 1, 4, 5, 1, 1, 5, 1, 6, 9, 5, 1, 4, 5, 6, 5, 10, 1, 16, 1, 1, 14, 7, 14, 9, 1, 8, 20, 10, 1, 35, 1, 15, 21, 9, 1, 5, 14, 21, 27, 21, 1, 14, 28, 20, 35, 10, 1, 35, 1, 11, 56, 1, 48, 64, 1, 28, 44, 70, 1, 14, 1, 12, 42, 36, 42
Offset: 1
Examples
For n=10; (m=5; 2*5 = 10), (m=6; (6/3)*nextprime(3) = 10), hence a(10) = a(5) + a(6) = 3.
References
- B. E. Sagan, The Symmetric Group, Springer, 2001, New York.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A285175.
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=1, 1, add(a(n/q*`if`(q=2, 1, prevprime(q))), q=factorset(n))) end: seq(a(n), n=1..100); # Alois P. Heinz, Aug 09 2012
-
Mathematica
a[n_] := a[n] = If[n == 1, 1, Sum[a[n/q*If[q == 2, 1, NextPrime[q, -1]]], {q, FactorInteger[n][[All, 1]]}]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 04 2016, after Alois P. Heinz *)
Extensions
New name from Emeric Deutsch, May 14 2015
Comments