A153501 Abundant numbers n such that n/(sigma(n)-2n) is an integer.
12, 18, 20, 24, 40, 56, 88, 104, 120, 196, 224, 234, 368, 464, 650, 672, 992, 1504, 1888, 1952, 3724, 5624, 9112, 11096, 13736, 15376, 15872, 16256, 17816, 24448, 28544, 30592, 32128, 77744, 98048, 122624, 128768, 130304, 174592, 396896, 507392
Offset: 1
Keywords
Examples
The abundance of 174592 = sigma(174592)-2*174592 = 43648. 174592/43648 = 4.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Maple
filter:= proc(n) local s; s:= numtheory:-sigma(n); (s > 2*n) and (n mod (s-2*n) = 0) end proc: select(filter, [$1..10^5]); # Robert Israel, Nov 07 2014
-
Mathematica
filterQ[n_] := Module[{s = DivisorSigma[1, n]}, s > 2n && Mod[n, s - 2n] == 0]; Select[Range[10^6], filterQ] (* Jean-François Alcover, Feb 01 2023, after Robert Israel *)
-
PARI
isok(n) = ((ab = (sigma(n)-2*n))>0) && (n % ab == 0) \\ Michel Marcus, Jul 16 2013
-
Sage
def A153501_list(len): def is_A153501(n): t = sigma(n,1) - 2*n return t > 0 and t.divides(n) return filter(is_A153501, range(1,len)) A153501_list(1000) # Peter Luschny, Nov 07 2014
Comments