cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153508 Sarrus numbers A001567 that are not Carmichael numbers A002997.

Original entry on oeis.org

341, 645, 1387, 1905, 2047, 2701, 3277, 4033, 4369, 4371, 4681, 5461, 7957, 8321, 8481, 10261, 11305, 12801, 13741, 13747, 13981, 14491, 15709, 16705, 18705, 18721, 19951, 23001, 23377, 25761, 30121, 30889, 31417, 31609, 31621, 33153, 34945
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2008

Keywords

Comments

A composite number n is a Fermat pseudoprime to base b if and only if b^(n-1) == 1 (mod n). Fermat pseudoprimes to base 2 are sometimes called Poulet numbers, Sarrus numbers, or frequently just pseudoprimes. For any given base pseudoprimes will contain Carmichael numbers as a subset. This sequence consists of base-2 Fermat pseudoprimes without the Carmichael numbers.

Crossrefs

Programs

  • Magma
    for n:= 3 to 1052503 by 2 do
      if (IsOne(2^(n-1) mod n)
          and not IsPrime(n)
          and not n mod CarmichaelLambda(n) eq 1)
          then n;
          end if;
    end for; // Brad Clardy, Dec 25 2014
  • Maple
    filter:= proc(n)
    local q;
       if isprime(n) then return false fi;
       if 2 &^(n-1) mod n <> 1 then return false fi;
       if not numtheory:-issqrfree(n) then return true fi;
       for q in numtheory:-factorset(n) do
         if (n-1) mod (q-1) <> 0 then return true fi;
       od:
       false
    end proc:
    select(filter, [$1..10^5]); # Robert Israel, Dec 29 2014
  • Mathematica
    Select[Range[3, 35000, 2], !PrimeQ[#] && PowerMod[2, # - 1, # ] == 1 && !Divisible[# - 1, CarmichaelLambda[#]] &] (* Amiram Eldar, Jun 25 2019 *)