A153512 Triangle T(n,m) = (A006882(2*n + 1))^2 / ( A006882(2*m+1) * A006882(2*n-2*m+1) ).
1, 3, 3, 15, 25, 15, 105, 245, 245, 105, 945, 2835, 3969, 2835, 945, 10395, 38115, 68607, 68607, 38115, 10395, 135135, 585585, 1288287, 1656369, 1288287, 585585, 135135, 2027025, 10135125, 26351325, 41409225, 41409225, 26351325, 10135125, 2027025
Offset: 0
Examples
1; 3, 3; 15, 25, 15; 105, 245, 245, 105; 945, 2835, 3969, 2835, 945; 10395, 38115, 68607, 68607, 38115, 10395; 135135, 585585, 1288287, 1656369, 1288287, 585585, 135135; 2027025, 10135125, 26351325, 41409225, 41409225, 26351325, 10135125, 2027025; 34459425, 195270075, 585810225, 1087933275, 1329696225, 1087933275, 585810225, 195270075, 34459425; 654729075, 4146617475, 14098499415, 30211070175, 43638212475, 43638212475, 30211070175, 14098499415, 4146617475, 654729075; 13749310575, 96245174025, 365731661295, 888205463145, 1480342438575, 1749495609225, 1480342438575, 888205463145, 365731661295, 96245174025, 13749310575;
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1034
Programs
-
Mathematica
T[n_, m_] = (2*n + 1)!!* Pi*Gamma[2*n + 2]/(n!*4^(n + 1)*Gamma[m + 3/ 2]*Gamma[n + 3/2 - m]); Table[Table[T[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
Formula
T(n,m)= A006882(2*n + 1)*Pi*Gamma(2*n + 2)/(n!*4^(n + 1)*Gamma(m + 3/2)*Gamma(n + 3/2 - m) ).
Extensions
Definition replaced by an integer expression by the Assoc. Editors of the OEIS, Feb 24 2010
Comments