A153677 Minimal exponents m such that the fractional part of (1024/1000)^m obtains a minimum (when starting with m=1).
1, 68, 142, 341, 395, 490, 585, 1164, 1707, 26366, 41358, 46074, 120805, 147332, 184259, 205661, 385710, 522271, 3418770, 3675376, 9424094
Offset: 1
Examples
a(2)=68, since fract((1024/1000)^68) = 0.016456..., but fract((1024/1000)^k) >= 0.024 for 1 <= k <= 67; thus fract((1024/1000)^68) < fract((1024/1000)^k) for 1 <= k < 68.
Programs
-
Mathematica
$MaxExtraPrecision = 10000; p = .999; Select[Range[1, 50000], If[FractionalPart[(1024/1000)^#] < p, p = FractionalPart[(1024/1000)^#]; True] &] (* Robert Price, Mar 15 2019 *)
-
PARI
upto(n) = my(res = List(), r = 1, p = 1); for(i=1, n, c = frac(p *= 1.024); if(c
David A. Corneth, Mar 15 2019
Formula
Recursion: a(1):=1, a(k):=min{ m>1 | fract((1024/1000)^m) < fract((1024/1000)^a(k-1))}, where fract(x) = x-floor(x).
Extensions
a(18) from Robert Price, Mar 15 2019
a(19)-a(20) from David A. Corneth, Mar 15 2019
a(21) from Robert Price, Mar 16 2019
Comments