cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A153677 Minimal exponents m such that the fractional part of (1024/1000)^m obtains a minimum (when starting with m=1).

Original entry on oeis.org

1, 68, 142, 341, 395, 490, 585, 1164, 1707, 26366, 41358, 46074, 120805, 147332, 184259, 205661, 385710, 522271, 3418770, 3675376, 9424094
Offset: 1

Views

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Comments

Recursive definition: a(1)=1, a(n) is the least positive integer m such that the fractional part of (1024/1000)^m is less than the fractional part of (1024/1000)^k for all k, 1 <= k < m.
a(21) >= 4.5*10^6. - David A. Corneth, Mar 15 2019
a(22) > 10^7. Robert Price, Mar 16 2019

Examples

			a(2)=68, since fract((1024/1000)^68) = 0.016456..., but fract((1024/1000)^k) >= 0.024 for 1 <= k <= 67; thus fract((1024/1000)^68) < fract((1024/1000)^k) for 1 <= k < 68.
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 10000;
    p = .999;
    Select[Range[1, 50000],
    If[FractionalPart[(1024/1000)^#] < p,
    p = FractionalPart[(1024/1000)^#]; True] &] (* Robert Price, Mar 15 2019 *)
  • PARI
    upto(n) = my(res = List(), r = 1, p = 1); for(i=1, n, c = frac(p *= 1.024); if(cDavid A. Corneth, Mar 15 2019

Formula

Recursion: a(1):=1, a(k):=min{ m>1 | fract((1024/1000)^m) < fract((1024/1000)^a(k-1))}, where fract(x) = x-floor(x).

Extensions

a(18) from Robert Price, Mar 15 2019
a(19)-a(20) from David A. Corneth, Mar 15 2019
a(21) from Robert Price, Mar 16 2019

A153673 Greatest number m such that the fractional part of (101/100)^A153669(n) <= 1/m.

Original entry on oeis.org

100, 147, 703, 932, 1172, 3389, 7089, 8767, 11155, 17457, 20810, 25355, 1129226, 1741049, 1960780, 2179637, 2859688, 11014240, 75249086, 132665447, 499298451
Offset: 1

Views

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Examples

			a(2)=147 since 1/148<fract((101/100)^A153669(2))=fract((101/100)^70)=0.00676...<=1/147.
		

Crossrefs

Programs

  • Mathematica
    A153669 = {1, 70, 209, 378, 1653, 2697, 4806, 13744, 66919, 67873,
       75666, 81125, 173389, 529938, 1572706, 4751419, 7159431, 7840546,
       15896994, 71074288, 119325567};
    Table[fp = FractionalPart[(101/100)^A153669[[n]]]; m = Floor[1/fp];
    While[fp <= 1/m, m++]; m - 1, {n, 1, Length[A153669]}] (* Robert Price, Mar 25 2019 *)

Formula

a(n) = floor(1/fract((101/100)^A153669(n))), where fract(x) = x-floor(x).

Extensions

a(15)-a(21) from Robert Price, Mar 25 2019
Showing 1-2 of 2 results.