A153693 Minimal exponents m such that the fractional part of (10/9)^m obtains a minimum (when starting with m=1).
1, 7, 50, 62, 324, 3566, 66877, 108201, 123956, 132891, 182098, 566593, 3501843
Offset: 1
Examples
a(2)=7, since fract((10/9)^7) = 0.09075.., but fract((10/9)^k) >= 0.11... for 1 <= k <= 6; thus fract((10/9)^7) < fract((10/9)^k) for 1 <= k < 7.
Programs
-
Mathematica
$MaxExtraPrecision = 100000; p = 1; Select[Range[1, 10000], If[FractionalPart[(10/9)^#] < p, p = FractionalPart[(10/9)^#]; True] &] (* Robert Price, Mar 24 2019 *)
Formula
Recursion: a(1):=1, a(k):=min{ m>1 | fract((10/9)^m) < fract((10/9)^a(k-1))}, where fract(x) = x-floor(x).
Extensions
a(12)-a(13) from Robert Price, Mar 24 2019
Comments