cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153818 a(n) = Sum_{k=1..n} floor(n^2/k^2).

Original entry on oeis.org

1, 5, 12, 22, 35, 53, 72, 96, 123, 153, 184, 222, 260, 304, 351, 402, 453, 510, 568, 633, 697, 765, 839, 916, 994, 1077, 1164, 1252, 1342, 1443, 1535, 1641, 1747, 1856, 1969, 2083, 2200, 2321, 2447, 2579, 2705, 2844, 2979, 3123, 3269, 3417, 3570, 3726, 3881
Offset: 1

Views

Author

Ctibor O. Zizka, Jan 02 2009

Keywords

Comments

How can Sum_{k=1..n} floor(n^2/k^2) be expressed as a function of Sum_{k=1..n} floor(n/k)? [Ctibor O. Zizka, Feb 14 2009]

Examples

			a(4)=22 because floor(16/1) + floor(16/4) + floor(16/9) + floor(16,16) = 16 + 4 + 1 + 1 = 22. [_Emeric Deutsch_, Jan 13 2009]
		

Crossrefs

Programs

  • Maple
    a := proc (n) options operator, arrow: sum(floor(n^2/k^2), k = 1 .. n) end proc: seq(a(n), n = 1 .. 50); # Emeric Deutsch, Jan 13 2009
  • PARI
    a(n)=sum(k=1,n,n^2\k^2) \\ Benoit Cloitre, Jan 22 2013

Formula

From Benoit Cloitre, Jan 22 2013: (Start)
Asymptotic formula: a(n) = zeta(2)*n^2 + zeta(1/2)*n + O(n^(1/2)).
Conjecture: a(n) = zeta(2)*n^2 + zeta(1/2)*n + O(n^0.5/log(n)) (see link). (End)

Extensions

Definition edited by Emeric Deutsch, Jan 13 2009
Extended by Emeric Deutsch, Jan 13 2009