cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A153831 Index sequence to A089840: set-wise difference of A153829 and A153830.

Original entry on oeis.org

68, 73, 74, 83, 84, 87, 88, 183, 184, 189, 190, 199, 202, 203, 252, 254, 261, 262, 268, 269, 270, 271, 515, 537, 539, 573, 575, 591, 593, 871, 894, 895, 990, 995, 996, 1110, 1132, 1134, 1466, 1489, 1490, 1585, 1590, 1591, 1600, 1601, 1604, 1605, 2213
Offset: 0

Views

Author

Antti Karttunen, Jan 07 2009

Keywords

Comments

The terms give the positions to bijections in A089840 which preserve A153835/A127302 (the non-oriented form of binary trees), but do not extend uniquely to automorphisms of an infinite binary tree.

Crossrefs

A089840 Signature permutations of non-recursive Catalan automorphisms (i.e., bijections of finite plane binary trees, with no unlimited recursion down to indefinite distances from the root), sorted according to the minimum number of opening nodes needed in their defining clauses.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 7, 3, 2, 1, 0, 6, 8, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 17, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 18, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 10, 12, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 21, 14, 13, 12, 8, 7, 6
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2003; last revised Jan 06 2009

Keywords

Comments

Each row is a permutation of natural numbers and occurs only once. The table is closed with regards to the composition of its rows (see A089839) and it contains the inverse of each (their positions are shown in A089843). The permutations in table form an enumerable subgroup of the group of all size-preserving "Catalan bijections" (bijections among finite unlabeled rooted plane binary trees). The order of each element is shown at A089842.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A069770, 2: A072796, 3: A089850, 4: A089851, 5: A089852, 6: A089853, 7: A089854, 8: A072797, 9: A089855, 10: A089856, 11: A089857, 12: A074679, 13: A089858, 14: A073269, 15: A089859, 16: A089860, 17: A074680, 18: A089861, 19: A073270, 20: A089862, 21: A089863.
Other rows: row 83: A154125, row 169: A129611, row 183: A154126, row 251: A129612, row 253: A123503, row 258: A123499, row 264: A123500, row 3608: A129607, row 3613: A129605, row 3617: A129606, row 3655: A154121, row 3656: A154123,row 3702: A082354, row 3747: A154122, row 3748: A154124, row 3886: A082353, row 4069: A082351, row 4207: A089865, row 4253: A082352, row 4299: A089866, row 65167: A129609, row 65352: A129610, row 65518: A123495, row 65796: A123496, row 79361: A123492, row 1653002: A123695, row 1653063: A123696, row 1654023: A073281, row 1654249: A123498, row 1654694: A089864, row 1654720: A129604,row 1655089: A123497, row 1783367: A123713, row 1786785: A123714.
Tables A122200, A122201, A122202, A122203, A122204, A122283, A122284, A122285, A122286, A122287, A122288, A122289, A122290, A130400-A130403 give various "recursive derivations" of these non-recursive automorphisms. See also A089831, A073200.
Index sequences to this table, giving various subgroups or other important constructions: A153826, A153827, A153829, A153830, A123694, A153834, A153832, A153833.

A153141 Permutation of nonnegative integers: A059893-conjugate of A153151.

Original entry on oeis.org

0, 1, 3, 2, 7, 6, 4, 5, 15, 14, 12, 13, 8, 9, 10, 11, 31, 30, 28, 29, 24, 25, 26, 27, 16, 17, 18, 19, 20, 21, 22, 23, 63, 62, 60, 61, 56, 57, 58, 59, 48, 49, 50, 51, 52, 53, 54, 55, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 127, 126, 124, 125, 120, 121
Offset: 0

Views

Author

Antti Karttunen, Dec 20 2008

Keywords

Comments

This permutation is induced by a wreath recursion a = s(a,b), b = (b,b) (i.e., binary transducer, where s means that the bits at that state are toggled: 0 <-> 1) given on page 103 of the Bondarenko, Grigorchuk, et al. paper, starting from the active (swapping) state a and rewriting bits from the second most significant bit to the least significant end, continuing complementing as long as the first 1-bit is reached, which is the last bit to be complemented.
The automorphism group of infinite binary tree (isomorphic to an infinitely iterated wreath product of cyclic groups of two elements) embeds naturally into the group of "size-preserving Catalan bijections". Scheme-function psi gives an isomorphism that maps this kind of permutation to the corresponding Catalan automorphism/bijection (that acts on S-expressions). The following identities hold: *A069770 = psi(A063946) (just swap the left and right subtrees of the root), *A057163 = psi(A054429) (reflect the whole tree), *A069767 = psi(A153141), *A069768 = psi(A153142), *A122353 = psi(A006068), *A122354 = psi(A003188), *A122301 = psi(A154435), *A122302 = psi(A154436) and from *A154449 = psi(A154439) up to *A154458 = psi(A154448). See also comments at A153246 and A153830.
a(1) to a(2^n) is the sequence of row sequency numbers in a Hadamard-Walsh matrix of order 2^n, when constructed to give "dyadic" or Payley sequency ordering. - Ross Drewe, Mar 15 2014
In the Stern-Brocot enumeration system for positive rationals (A007305/A047679), this permutation converts the denominator into the numerator: A007305(n) = A047679(a(n)). - Yosu Yurramendi, Aug 01 2020

Examples

			18 = 10010 in binary and after complementing the second, third and fourth most significant bits at positions 3, 2 and 1, we get 1110, at which point we stop (because bit-1 was originally 1) and fix the rest, so we get 11100 (28 in binary), thus a(18)=28. This is the inverse of "binary adding machine". See pages 8, 9 and 103 in the Bondarenko, Grigorchuk, et al. paper.
19 = 10011 in binary. By complementing bits in (zero-based) positions 3, 2 and 1 we get 11101 in binary, which is 29 in decimal, thus a(19)=29.
		

Crossrefs

Inverse: A153142. a(n) = A059893(A153151(A059893(n))) = A059894(A153152(A059894(n))) = A154440(A154445(n)) = A154442(A154443(n)). Corresponds to A069767 in the group of Catalan bijections. Cf. also A154435-A154436, A154439-A154448, A072376.
Differs from A006068 for the first time at n=14, where a(14)=10 while A006068(14)=11.
A240908-A240910 these give "natural" instead of "dyadic" sequency ordering values for Hadamard-Walsh matrices, orders 8,16,32. - Ross Drewe, Mar 15 2014

Programs

  • Python
    def ok(n): return n&(n - 1)==0
    def a153151(n): return n if n<2 else 2*n - 1 if ok(n) else n - 1
    def A(n): return (int(bin(n)[2:][::-1], 2) - 1)/2
    def msb(n): return n if n<3 else msb(n/2)*2
    def a059893(n): return A(n) + msb(n)
    def a(n): return 0 if n==0 else a059893(a153151(a059893(n))) # Indranil Ghosh, Jun 09 2017
    
  • R
    maxlevel <- 5 # by choice
    a <- 1
    for(m in 1:maxlevel){
    a[2^m    ] <- 2^(m+1) - 1
    a[2^m + 1] <- 2^(m+1) - 2
    for (k in 1:(2^m-1)){
       a[2^(m+1) + 2*k    ] <- 2*a[2^m + k]
       a[2^(m+1) + 2*k + 1] <- 2*a[2^m + k] + 1}
    }
    a <- c(0,a)
    # Yosu Yurramendi, Aug 01 2020

Formula

Conjecture: a(n) = f(a(f(a(A053645(n)))) + A053644(n)) for n > 0 where f(n) = A054429(n) for n > 0 with f(0) = 0. - Mikhail Kurkov, Oct 02 2023
From Mikhail Kurkov, Dec 22 2023: (Start)
a(n) < 2^k iff n < 2^k for k >= 0.
Conjectured formulas:
a(2^m + k) = f(2^m + f(k)) for m >= 0, 0 <= k < 2^m with a(0) = 0.
a(n) = f(A153142(f(n))) for n > 0 with a(0) = 0. (End)

A153826 Index sequence to A089840: positions of bijections that preserve A127301 (the non-oriented form of general trees).

Original entry on oeis.org

0, 2, 22, 23, 24, 25, 26, 91, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 395, 531, 634, 876, 1005, 1109, 1228, 1229, 1230, 1231, 1232, 1704, 3608, 3611, 3613, 3615, 3617, 4392
Offset: 0

Views

Author

Antti Karttunen, Jan 07 2009

Keywords

Comments

These terms form a subgroup in A089840 (A089839). Because A127301 can be computed as a fold and most of the recursive derivations of A089840 (i.e., tables A122201-A122204, A122283-A122290, A130400-A130403) are also folds, this sequence also gives the indices to those derived tables where bijections preserving A127301 occur.

Crossrefs

Subset of A153827. Apart from 0, has no other terms in common with A153829. Cf. also A153828, A153830, A153831, A153832, A153833.

A153829 Index sequence to A089840: positions of bijections that preserve A153835, or equivalently, A127302 (the non-oriented form of binary trees).

Original entry on oeis.org

0, 1, 3, 7, 15, 21, 27, 46, 68, 73, 74, 83, 84, 87, 88, 92, 114, 149, 169, 183, 184, 189, 190, 199, 202, 203, 225, 251, 252, 254, 261, 262, 268, 269, 270, 271, 299, 400, 515, 537, 539, 573, 575, 591, 593, 638, 753, 871, 894, 895, 990, 995, 996, 1110, 1132
Offset: 0

Views

Author

Antti Karttunen, Jan 07 2009

Keywords

Comments

These elements form a subgroup in A089840 (A089839). Such elements consists of only such clauses where each vertex stays at the same distance from the root of the binary tree and in the image tree will still be sibling to its original sibling in the pre-image tree.
Because A127302 can be computed as a fold and most of the recursive derivations of A089840 (i.e. tables A122201-A122204, A122283-A122290, A130400-A130403) are also folds, this sequence gives also the indices to those derived tables where bijections preserving A127302 occur.

Crossrefs

Superset of A153830. Apart from 0, has no other elements common with A153826. Cf. also A153831, A153827, A153829, A153832, A153833.

A153827 Index sequence to A089840: positions of bijections that preserve A129593 (that is, they permute the Łukasiewicz-word computed for a general tree).

Original entry on oeis.org

0, 2, 8, 22, 23, 24, 25, 26, 45, 71, 91, 115, 119, 121, 125, 127, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 395, 396, 397, 398, 399, 514, 525, 526, 531, 532, 633, 634, 635, 636, 637
Offset: 0

Views

Author

Antti Karttunen, Jan 07 2009

Keywords

Comments

These elements form a subgroup in A089840 (A089839).

Crossrefs

A153828 Index sequence to A089840: set-wise difference of A153827 and A153826.

Original entry on oeis.org

8, 45, 71, 115, 119, 121, 125, 127, 396, 397, 398, 399, 514, 525, 526, 532, 633, 635, 636, 637, 656, 657, 658, 659, 660, 661, 752, 757, 758, 874, 880, 888, 892, 993, 1001, 1120, 1121, 1126, 1127, 1156, 1157, 1168, 1169, 1174, 1175, 1347, 1394, 1395
Offset: 0

Views

Author

Antti Karttunen, Jan 07 2009

Keywords

Comments

The terms give the positions of bijections in A089840 which preserve A129593, but not A127301.

Crossrefs

Showing 1-7 of 7 results.