A153847 Number of non-isomorphic connected I-graphs I(n,j,k) on 2n vertices (1<=j,k<=Floor[(n-1)/2]).
1, 1, 2, 2, 2, 3, 3, 4, 3, 7, 4, 5, 7, 6, 5, 8, 5, 10, 9, 8, 6, 14, 8, 10, 9, 13, 8, 19, 8, 12, 13, 13, 13, 19, 10, 14, 15, 20, 11, 25, 11, 19, 19, 17, 12, 26, 14, 22, 19, 22, 14, 26, 19, 26, 21, 22, 15, 40, 16, 23, 25, 24, 23, 37, 17, 28, 25, 37, 18, 38, 19, 28, 31, 31, 25, 43, 20
Offset: 3
Keywords
References
- I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2.
Links
- Marko Boben, Tomaz Pisanski, Arjana Zitnik, I-graphs and the corresponding configurations J. Combin. Des. 13 (2005), no. 6, 406--424.
- M. Watkins, A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combin. Theory 6 (1969), 152-164.
- Eric Weisstein's World of Mathematics, Graph Expansion
Comments