A153853 Nonzero coefficients of g.f.: A(x) = G(G(G(x))) where G(x) = x + G(G(x))^3 is the g.f. of A153851.
1, 3, 27, 339, 5067, 84738, 1536867, 29687772, 603835479, 12831704772, 283320533673, 6473430313902, 152586247226958, 3701535783215857, 92238331155559794, 2357440730629390878, 61720161749858023305
Offset: 1
Keywords
Examples
G.f.: A(x) = x + 3*x^3 + 27*x^5 + 339*x^7 + 5067*x^9 +... A(x)^3 = x^3 + 9*x^5 + 108*x^7 + 1530*x^9 + 24219*x^11 +... A(x) = G(G(G(x))) where G(x) = x + x^3 + 6*x^5 + 57*x^7 + 683*x^9 + 9474*x^11 +... Let F(x) = g.f. of A153852 and H(x) = g.f. of A153854, then A(x) = F(x) + x^2*H(x)^3 where F(x) = x + 2*x^3 + 15*x^5 + 165*x^7 + 2213*x^9 +... H(x) = x + 4*x^3 + 42*x^5 + 594*x^7 + 9827*x^9 +... H(x)^3 = x^3 + 12*x^5 + 174*x^7 + 2854*x^9 + 51045*x^11 +...
Programs
-
PARI
{a(n)=local(G=x+O(x^(2*n+1))); for(i=0, n, G=serreverse(x-G^3)); polcoeff(subst(G,x,subst(G,x,G)), 2*n-1)}