cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154121 Signature permutation of a Catalan bijection: row 3655 of A089840.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 6, 7, 8, 11, 12, 13, 9, 10, 15, 14, 16, 17, 18, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 34, 35, 23, 24, 36, 25, 26, 27, 39, 40, 41, 37, 38, 43, 42, 44, 45, 46, 47, 48, 49, 50, 52, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 79, 80, 81, 82, 83, 84, 85
Offset: 0

Views

Author

Antti Karttunen, Jan 06 2009

Keywords

Comments

This bijection of binary trees can be obtained by applying bijection *A074679 to the right hand side subtree and leaving the left hand side subtree intact:
....C...D.......B...C
.....\./.........\./
..B...x....-->....x...D.................B..().........()..B..
...\./.............\./...................\./....-->....\./...
A...x...........A...x.................A...x.........A...x....
.\./.............\./...................\./...........\./.....
..x...............x.....................x.............x......
.............................................................
Note that the first clause corresponds to generator B of Thompson's groups F, T and V, while *A074679's first clause corresponds to generator A and furthermore, *A089851 corresponds to generator C and *A072796 to generator pi_0 of Thompson's group V. (To be checked: can Thompson's V be embedded in A089840 by using these or some other suitably chosen generators?)
Comment to above: I think now that it is a misplaced hope to embed V in A089840. Instead, it is more probable that Thompson's V is isomorphic to the quotient group A089840/N, where N is a subgroup of A089840 which includes identity (*A001477) and any other bijection (e.g. *A154126) that fixes all large enough trees. For more details, see my "On the connection of A089840 with ..." page. - Antti Karttunen, Aug 23 2012

Crossrefs

Inverse: A154122. a(n) = A069770(A089865(A069770(n))). Cf. A154123, A154126.