cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154145 Indices k such that 15 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

1, 4, 6, 11, 20, 33, 43, 70, 121, 196, 254, 411, 708, 1145, 1483, 2398, 4129, 6676, 8646, 13979, 24068, 38913, 50395, 81478, 140281, 226804, 293726, 474891, 817620, 1321913, 1711963, 2767870, 4765441, 7704676, 9978054, 16132331, 27775028
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Comments

a(1..4)=(1,4,6,11); a(n>4)=6*a(n-2)-a(n-4)+2. [From Ctibor O. Zizka, Nov 13 2009]

Examples

			1*(1+1)/2+15 = 4^2. 4*(4+1)/2+15 = 5^2. 6*(6+1)/2+15 = 6^2. 11*(11+1)/2+15 = 9^2.
		

Crossrefs

Programs

Formula

{k: 15+k*(k+1)/2 in A000290}.
Conjectures: (Start)
a(n)= +a(n-1) +6*a(n-4) -6*a(n-5) -a(n-8) +a(n-9).
G.f.: x*(-1-3*x-2*x^2-5*x^3-3*x^4+5*x^5+2*x^6+3*x^7+2*x^8)/((x-1) * (x^4+2*x^2-1) * (x^4-2*x^2-1)).
G.f.: ( 4 + (7+4*x+16*x^2+11*x^3)/(x^4-2*x^2-1) + 1/(x-1) + (-4-7*x-3*x^2-2*x^3)/(x^4+2*x^2-1) )/2. (End)
a(1..4) = (1,4,6,11); a(n) = 6*a(n-2) - a(n-4) + 2, for n>4. - Ctibor O. Zizka, Nov 13 2009

Extensions

a(32)-a(37) from Donovan Johnson, Nov 01 2010