A154145 Indices k such that 15 plus the k-th triangular number is a perfect square.
1, 4, 6, 11, 20, 33, 43, 70, 121, 196, 254, 411, 708, 1145, 1483, 2398, 4129, 6676, 8646, 13979, 24068, 38913, 50395, 81478, 140281, 226804, 293726, 474891, 817620, 1321913, 1711963, 2767870, 4765441, 7704676, 9978054, 16132331, 27775028
Offset: 1
Keywords
Examples
1*(1+1)/2+15 = 4^2. 4*(4+1)/2+15 = 5^2. 6*(6+1)/2+15 = 6^2. 11*(11+1)/2+15 = 9^2.
Links
- F. T. Adams-Watters, SeqFan Discussion, Oct 2009
Programs
-
Mathematica
Flatten[Position[Accumulate[Range[28000000]],?(IntegerQ[Sqrt[#+15]]&)]] (* This program will take a long time to run. *) (* _Harvey P. Dale, Jun 09 2014 *) Join[{1, 4, 6}, Select[Range[0, 1000], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 15 &]] (* G. C. Greubel, Sep 03 2016 *)
Formula
{k: 15+k*(k+1)/2 in A000290}.
Conjectures: (Start)
a(n)= +a(n-1) +6*a(n-4) -6*a(n-5) -a(n-8) +a(n-9).
G.f.: x*(-1-3*x-2*x^2-5*x^3-3*x^4+5*x^5+2*x^6+3*x^7+2*x^8)/((x-1) * (x^4+2*x^2-1) * (x^4-2*x^2-1)).
G.f.: ( 4 + (7+4*x+16*x^2+11*x^3)/(x^4-2*x^2-1) + 1/(x-1) + (-4-7*x-3*x^2-2*x^3)/(x^4+2*x^2-1) )/2. (End)
a(1..4) = (1,4,6,11); a(n) = 6*a(n-2) - a(n-4) + 2, for n>4. - Ctibor O. Zizka, Nov 13 2009
Extensions
a(32)-a(37) from Donovan Johnson, Nov 01 2010
Comments