A154146 Numbers k such that 16 plus the k-th triangular number is a perfect square.
0, 14, 17, 87, 104, 510, 609, 2975, 3552, 17342, 20705, 101079, 120680, 589134, 703377, 3433727, 4099584, 20013230, 23894129, 116645655, 139265192, 679860702, 811697025
Offset: 0
Examples
0, 14, 17, and 87 are terms: 0* (0+1)/2 + 16 = 4^2, 14*(14+1)/2 + 16 = 11^2, 17*(17+1)/2 + 16 = 13^2, 87*(87+1)/2 + 16 = 62^2.
Links
- Robert Israel, Table of n, a(n) for n = 0..2608
- F. T. Adams-Watters, SeqFan Discussion, Oct 2009
- Robert Israel, Proof of conjectured recurrence
- Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-1,1).
Programs
-
Maple
f:= gfun:-rectoproc({a(n+4)-6*a(n+2)+a(n)=2, a(0)=0, a(1)=14, a(2)=17, a(3)=87}, a(n), remember): map(f, [$0..40]); # Robert Israel, Jul 18 2019
-
Mathematica
Join[{0}, Select[Range[0, 1000], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 16 &]] (* G. C. Greubel, Sep 03 2016 *)
-
PARI
{for (n=0, 10^9, if ( issquare(n*(n+1)\2 + 16), print1(n, ", ") ) );}
Formula
{k: 16+k*(k+1)/2 in A000290}.
Conjectures: (Start)
a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x^2*(-14-3*x+14*x^2+x^3)/((x-1) * (x^2-2*x-1) * (x^2+2*x-1)).
G.f.: ( 2 + (8+23*x)/(x^2-2*x-1) + 1/(x-1) + (-7+6*x)/(x^2+2*x-1) )/2. (End)
Conjectures confirmed: see link. - Robert Israel, Jul 18 2019
Comments