cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154147 Indices k such that 19 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

3, 9, 30, 60, 179, 353, 1046, 2060, 6099, 12009, 35550, 69996, 207203, 407969, 1207670, 2377820, 7038819, 13858953, 41025246, 80775900, 239112659, 470796449, 1393650710, 2744002796, 8122791603, 15993220329, 47343098910, 93215319180, 275935801859
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Examples

			3*(3+1)/2+19 = 5^2. 9*(9+1)/2+19 = 8^2. 30*(30+1)/2+19 = 22^2. 60*(60+1)/2+19 = 43^2.
		

Crossrefs

Programs

  • Mathematica
    Join[{3, 9}, Select[Range[0, 10^5], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 19 &]] (* or *) LinearRecurrence[{1,6,-6,-1,1}, {3,9,30,60,179}, 25] (* G. C. Greubel, Sep 03 2016 *)
  • PARI
    {for (n=0, 10^9, if ( issquare(n*(n+1)\2 + 19), print1(n, ", ") ) ); }

Formula

{k: 19+k*(k+1)/2 in A000290}.
a(n)= +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(3 +6*x +3*x^2 -6*x^3 -4*x^4)/((1-x) * (x^2-2*x-1) * (x^2+2*x-1)).