cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154151 Indices k such that 25 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

0, 18, 21, 111, 128, 650, 749, 3791, 4368, 22098, 25461, 128799, 148400, 750698, 864941, 4375391, 5041248, 25501650, 29382549, 148634511, 171254048, 866305418, 998141741, 5049197999, 5817596400, 29428882578, 33907436661, 171524097471, 197627023568
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Examples

			0*(0+1)/2+25 = 5^2. 18*(18+1)/2+25 = 14^2. 21*(21+1)/2+25 = 16^2. 111*(111+1)/2+25 = 79^2.
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, Select[Range[0, 10^5], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 25 &]] (* or *) LinearRecurrence[{1,6,-6,-1,1}, {0,18,21,111,128}, 25] (* G. C. Greubel_, Sep 03 2016 *)
  • PARI
    for(n=1,10^10,if(issquare(25+n*(n+1)/2),print1(n,", ")))

Formula

{k: 25+k*(k+1)/2 in A000290}.
Conjectures: (Start)
a(n)= +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x^2*(-18-3*x+18*x^2+x^3)/( (x-1) * (x^2+2*x-1) * (x^2-2*x-1)).
G.f.: ( 2 + 1/(x-1) + (10+29*x)/(x^2-2*x-1) + (-9+8*x)/(x^2+2*x-1) )/2. (End)
The first conjecture is true for the first 1000 terms of the sequence. - Harvey P. Dale, Jun 15 2013