cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A361290 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..floor((n-1)/2)} k^(n-1-j) * binomial(n,2*j+1).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 2, 0, 0, 1, 4, 4, 0, 0, 1, 6, 14, 8, 0, 0, 1, 8, 30, 48, 16, 0, 0, 1, 10, 52, 144, 164, 32, 0, 0, 1, 12, 80, 320, 684, 560, 64, 0, 0, 1, 14, 114, 600, 1936, 3240, 1912, 128, 0, 0, 1, 16, 154, 1008, 4400, 11648, 15336, 6528, 256, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 11 2023

Keywords

Examples

			Square array begins:
  0,  0,   0,   0,    0,    0, ...
  1,  1,   1,   1,    1 ,   1, ...
  0,  2,   4,   6,    8,   10, ...
  0,  4,  14,  30,   52,   80, ...
  0,  8,  48, 144,  320,  600, ...
  0, 16, 164, 684, 1936, 4400, ...
		

Crossrefs

Column k=1..10 give A131577, A007070(n-1), A030192(n-1), A016129(n-1), A093145, A154237, A154248, A154348(n-1), A016175(n-1), A361293.
Main diagonal gives A360766.
Cf. A361432.

Programs

  • PARI
    T(n, k) = polcoef(lift(Mod('x, ('x-k)^2-k)^n), 1);

Formula

T(0,k) = 0, T(1,k) = 1; T(n,k) = 2 * k * T(n-1,k) - (k-1) * k * T(n-2,k).
T(n,k) = ((k + sqrt(k))^n - (k - sqrt(k))^n)/(2 * sqrt(k)) for k > 0.
G.f. of column k: x/(1 - 2 * k * x + (k-1) * k * x^2).
E.g.f. of column k: exp(k * x) * sinh(sqrt(k) * x) / sqrt(k) for k > 0.

A360766 a(0) = 0; a(n) = ( (n + sqrt(n))^n - (n - sqrt(n))^n )/(2 * sqrt(n)).

Original entry on oeis.org

0, 1, 4, 30, 320, 4400, 73872, 1462552, 33325056, 858283776, 24641000000, 779935205984, 26972930949120, 1011642325897216, 40890444454377728, 1771640957790000000, 81896889467638120448, 4022826671022707900416, 209224123984489179202560
Offset: 0

Views

Author

Seiichi Manyama, Mar 11 2023

Keywords

Crossrefs

Main diagonal of A361290.
Cf. A084062.

Programs

  • PARI
    a(n) = polcoeff(lift(Mod('x, ('x-n)^2-n)^n), 1); \\ Kevin Ryde, Mar 16 2023

Formula

a(n) = Sum_{k=0..floor((n-1)/2)} n^(n-1-k) * binomial(n,2*k+1).
a(n) = [x^n] x/(1 - 2*n*x + (n-1)*n*x^2).
a(n) = n! * [x^n] exp(n * x) * sinh(sqrt(n) * x) / sqrt(n) for n > 0.
Showing 1-2 of 2 results.