A154255 Floor of harmonic energy of the conjectural minimal-energy configurations of n points on the unit sphere in R^4, under the harmonic potential function.
0, 1, 2, 4, 6, 9, 13, 17, 22, 28, 34, 41, 49, 57, 66, 76, 87, 98, 110, 123, 137, 152, 167, 182, 199, 217, 235, 254, 274, 294, 315, 337, 360, 384, 409, 434, 460, 487, 514, 543, 572, 601, 632, 664, 697, 730, 764, 799, 835, 871, 909, 947, 985, 1025, 1066, 1108
Offset: 2
Keywords
Examples
a(7) = 9 because the harmonic energy given for 7 points on the 3-dimensional hypersurface of the 4-dimensional hypersphere is 9.500000000000 and floor(9.5) = 9. The coordinates of the 7 points are: (-0.774303376406259, -0.485591416628164, -0.399742015818543, +0.069725018266390); (-0.041986168871976, -0.225694667224730, +0.501037029764170, +0.834422539014180); (+0.041986168871976, +0.225694667224730, -0.501037029764170, -0.834422539014180); (+0.487341518427503, -0.842251530902810, +0.039549697743334, -0.227038376749526); (+0.104024891455872, +0.475037164815855, -0.683629522540632, +0.544214286758604); (+0.774303376406259, +0.485591416628164, +0.399742015818543, -0.069725018266390); (-0.591366409883375, +0.367214366086955, +0.644079824797298, -0.317175910009077).
Links
- B. Ballinger, G. Blekherman, H. Cohn, N. Giansiracusa, E. Kelly and A. Schurmann, This table shows the conjectural minimal-energy configurations of N points on the unit sphere in R^n...
- B. Ballinger, G. Blekherman, H. Cohn, N. Giansiracusa, E. Kelly and A. Schurmann, Experimental study of energy-minimizing point configurations on spheres, arXiv:math/0611451 [math.MG], 2006-2008.
Crossrefs
Cf. A153054.
Comments