A154271 Dirichlet inverse of A154272; Fully multiplicative with a(3^e) = (-1)^e, a(p^e) = 0 for primes p <> 3.
1, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..59049 (terms 1..220 from Mats Granvik)
Crossrefs
Programs
-
Mathematica
nn = 95;a = PadRight[{1, 0, 1}, nn, 0];Inverse[Table[Table[If[Mod[n, k] == 0, a[[n/k]], 0], {k, 1, nn}], {n, 1, nn}]][[All, 1]] (* Mats Granvik, Jul 24 2017 *)
-
PARI
A154271(n) = { my(k=valuation(n,3)); if((3^k)==n,(-1)^k,0); }; \\ Antti Karttunen, Jul 24 2017
-
Scheme
(define (A154271 n) (cond ((= 1 n) 1) ((zero? (modulo n 3)) (* -1 (A154271 (/ n 3)))) (else 0))) ;; Antti Karttunen, Jul 24 2017
Formula
Fully multiplicative with a(3) = -1, a(p) = 0 for primes p <> 3. - Antti Karttunen, Jul 24 2017
From Amiram Eldar, Nov 03 2023: (Start)
abs(a(n)) = A225569(n-1).
Dirichlet g.f.: 1/(1+3^(-s)). (End)
Extensions
Alternative description added to the name by Antti Karttunen, Jul 24 2017
Comments