A154275 Primes p=prime(k) such that abs(sum of digits of p - sum of digits of k) is prime.
5, 7, 11, 13, 19, 31, 37, 43, 47, 61, 67, 73, 89, 103, 107, 113, 137, 151, 157, 167, 173, 193, 211, 223, 227, 233, 239, 269, 271, 277, 281, 311, 353, 373, 379, 401, 409, 419, 421, 431, 433, 439, 443, 449, 467, 487, 503, 509, 571, 599, 601, 631, 641, 647, 653
Offset: 1
Examples
Prime(36)=151 and abs(1+5+1-(3+6)) = abs(7-9) = 2 (a prime), so 151 is in the sequence. Prime(37)=157 and abs(1+5+7-(3+7)) = abs(13-10) = 3 (a prime), so 157 is in the sequence.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..2000
Crossrefs
Cf. A000040.
Programs
-
Maple
A007953 := proc(n) add(i,i=convert(n,base,10)) ; end: A007605 := proc(n) A007953(ithprime(n)) ; end: A090431 := proc(n) A007953(n)-A007605(n) ; end: for n from 1 to 200 do q := abs(A090431(n)) ; if isprime(q) then p := ithprime(n) ; printf("%a,",p) ; fi; od: # R. J. Mathar, Jan 07 2009
-
Mathematica
Transpose[Select[Table[{n,Prime[n]},{n,200}],PrimeQ[Abs[Total[ IntegerDigits[ #[[2]]]] -Total[IntegerDigits[#[[1]]]]]]&]][[2]] (* Harvey P. Dale, Jan 27 2013 *)
Extensions
103, 113 etc. inserted by R. J. Mathar, Jan 07 2009
Name edited by Jon E. Schoenfield, Jan 06 2019