cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154279 List of pairs (a(n),b(n)): a(n) = prime(n) - prime(n-1) + a(n-1); b(n) = (prime(n) - prime(n-1))*b(n-1).

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 5, 2, 7, 4, 11, 16, 13, 32, 17, 128, 19, 256, 23, 1024, 29, 6144, 31, 12288, 37, 73728, 41, 294912, 43, 589824, 47, 2359296, 53, 14155776, 59, 84934656, 61, 169869312, 67, 1019215872, 71, 4076863488, 73, 8153726976, 79, 48922361856, 83
Offset: 0

Views

Author

Roger L. Bagula, Jan 06 2009

Keywords

Comments

There are primes associated with the product sequence:
Flatten[Table[If[PrimeQ[b[n] - 1], b[n] - 1, If[PrimeQ[b[n] + 1], b[ n] + 1, {}]], {n, 0, 30}]].
{2, 2, 2, 3, 3, 17, 31, 127, 257, 6143, 12289, 73727, 294911, 14155777, 169869311, 4076863487, 1174136684543}

Crossrefs

Cf. A081411.

Programs

  • Mathematica
    a[0] = 0; a[1] = 2; a[n_] := a[n] = Prime[n] - Prime[n - 1] + a[n - 1];
    b[0] = 1; b[1] = 1; b[n_] := b[n] = (Prime[n] - Prime[n - 1])*b[n - 1];
    Flatten[Table[{a[n], b[n]}, {n, 0, 30}]]
  • PARI
    a(n)=if(n<4, return(if(n>2,1,n))); my(k=n\2,p=prime(k-1),q=nextprime(p+1)); if(n%2, (q-p)*a(n-2), q-p + a(n-2)) \\ Charles R Greathouse IV, Sep 09 2016

Formula

{a(n),b(n)}:
a(n) = Prime[n] - Prime[n-1] + a(n-1);
b(n) = ( Prime[n] - Prime[n-1] )*b(n-1).