cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154290 Number of ordered triples satisfying p+F_s+L_t = n, where p is an odd prime, s >= 2 and F_s or L_t is odd.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 5, 5, 7, 6, 8, 6, 8, 8, 10, 9, 9, 11, 11, 10, 14, 10, 11, 11, 15, 13, 14, 10, 10, 11, 12, 12, 14, 15, 14, 13, 14, 12, 13, 11, 16, 13, 15, 15, 16, 13, 17, 12, 17
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 06 2009, Jan 07 2008

Keywords

Comments

Zhi-Wei Sun conjectured that a(n)>0 for every n=5,6,...; in other words, any integer n>4 can be written as the sum of an odd prime, a positive Fibonacci number and a Lucas number, with the Fibonacci number or the Lucas number odd. Moreover, Sun conjectured that lim inf_n a(n)/log(n) is greater than 3 and smaller than 4.

Examples

			For n=10 the a(10)=7 solutions are 3+F_4+L_3, 3+F_5+L_0, 5+F_2+L_3, 5+F_3+L_2, 5+F_4+L_0, 7+F_2+L_0, 7+F_3+L_1.
		

References

  • R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36(1971), 103-107.

Crossrefs

Programs

  • Mathematica
    PQ[m_]:=m>2&&PrimeQ[m] RN[n_]:=Sum[If[(Mod[n,2]==0||Mod[x,3]>0)&&PQ[n-(2*Fibonacci[x+1]-Fibonacci[x])-Fibonacci[y]],1,0], {x,0,2*Log[2,n]},{y,2,2*Log[2,Max[2,n-(2*Fibonacci[x+1]-Fibonacci[x])]]}] Do[Print[n," ",RN[n]];Continue,{n,1,50000}]