A154404 Number of ways to express n as the sum of an odd prime, a positive Fibonacci number and a Catalan number.
Examples
For n=7 the a(7)=3 solutions are 3+2+2, 3+3+1, 5+1+1.
References
- R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36(1971), 103-107.
- R. P. Stanley, Enumerative Combinatorics, Vol. II, Cambridge Univ. Press, 1999, Chapter 6.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..100000
- D. S. McNeil, Sun's strong conjecture
- Zhi-Wei Sun, A promising conjecture: n=p+F_s+F_t
- Zhi-Wei Sun, A summary concerning my conjecture n=p+F_s+F_t (II)
- Z.-W. Sun and R. Tauraso, Congruences involving Catalan numbers, arXiv:0709.1665v5.
- Zhi-Wei Sun, Mixed sums of primes and other terms, preprint, 2009
Programs
-
Maple
Cata:=proc(n) binomial(2*n,n)/(n+1); end proc: Fibo:=proc(n) if n=1 then return(1); elif n=2 then return(2); else return(Fibo(n-1) + Fibo(n-2)); fi; end proc: for n from 1 to 10^3 do rep_num:=0; for i from 1 while Fibo(i) < n do for j from 1 while Fibo(i)+Cata(j) < n do p:=n-Fibo(i)-Cata(j); if (p>2) and isprime(p) then rep_num:=rep_num+1; fi; od; od; printf("%d %d\n", n, rep_num); od:
-
Mathematica
a[n_] := (pp = {}; p = 2; While[ Prime[p] < n, AppendTo[pp, Prime[p++]] ]; ff = {}; f = 2; While[ Fibonacci[f] < n, AppendTo[ff, Fibonacci[f++]]]; cc = {}; c = 1; While[ CatalanNumber[c] < n, AppendTo[cc, CatalanNumber[c++]]]; Count[Outer[Plus, pp, ff, cc], n, 3]); Table[a[n], {n, 1, 88}] (* Jean-François Alcover, Nov 22 2011 *)
-
PARI
a(n)=my(i=1,j,f,c,t,s);while((f=fibonacci(i++))
Charles R Greathouse IV, Nov 22 2011
Formula
: p+F_s+C_t=n with p an odd prime and s>1}|.
Comments