cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A154536 Positive integers that can be written as the sum of a positive Pell number and twice a positive Pell number.

Original entry on oeis.org

3, 4, 5, 6, 7, 9, 11, 12, 14, 15, 16, 22, 25, 26, 29, 31, 33, 36, 39, 53, 59, 60, 63, 70, 72, 74, 80, 87, 94, 128, 141, 142, 145, 152, 169, 171, 173, 179, 193, 210, 227, 309, 339, 340, 343, 350, 367, 408, 410, 412
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 11 2009

Keywords

Comments

On Jan 10 2009, Zhi-Wei Sun conjectured that any integer greater than 5 can be expressed as the sum of an odd prime and a term in the above sequence; in other words, each n=6,7,... can be written in the form p+P_s+2*P_t with p an odd prime and s,t>0. This has been verified up to 5*10^13 by D. S. McNeil (from London Univ.). Motivated by this conjecture, Qing-Hu Hou (from Nankai Univ.) observed and Zhi-Wei Sun proved that each term a(n) in the above sequence can be uniquely written in the form P_s+2P_t with s,t>0. Sun noted that 2176 cannot be written as the sum of a prime and two Pell numbers; D. S. McNeil found that 393185153350 cannot be written in the form p+P_s+3P_t and 872377759846 cannot be written in the form p+P_s+4P_t, where p is a prime and s and t are nonnegative.
Zhi-Wei Sun has offered a monetary reward for settling this conjecture.

Examples

			For n=12 the a(12)=22 solution is 22 = P_4 + 2*P_3.
		

References

  • R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36(1971), 103-107.

Crossrefs

Programs

  • Mathematica
    P[n_]:=P[n]=2*P[n-1]+P[n-2] P[0]=0 P[1]=1 i:=0 Do[Do[If[n==2*P[x]+P[y],i=i+1;Print[i," ",n]], {x,1,Max[1,Log[2,n]]},{y,1,Log[2,n]+1}]; Continue,{n,1,100000}]

Extensions

Mentioned McNeil's verification record for the representation n = p + P_s + 2P_t and his examples for n not of the form p + P_s + 3P_t and n not of the form p + P_s + 4P_t. - Zhi-Wei Sun, Jan 17 2009
D. S. McNeil has verified the conjecture up to 5*10^13. - Zhi-Wei Sun, Jan 20 2009

A155114 Number of ways to express n as the sum of an odd prime, a positive Fibonacci number and twice a positive Fibonacci number.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 3, 2, 6, 3, 7, 3, 8, 5, 8, 6, 10, 5, 11, 6, 13, 7, 13, 7, 14, 5, 14, 7, 15, 8, 14, 4, 18, 8, 17, 7, 15, 5, 15, 11, 16, 8, 15, 7, 17, 12, 19, 10, 20, 10, 17, 10, 17, 13, 15, 11, 18, 8, 20, 10, 17, 9, 18, 11, 21, 11, 21, 7, 20, 11, 18, 11, 22, 9, 25, 11, 24, 13, 19, 14, 20, 11
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 20 2009

Keywords

Comments

Motivated by his conjecture related to A154257, on Dec 26 2008, Zhi-Wei Sun conjectured that a(n)>0 for n=6,7,... On Jan 15 2009, D. S. McNeil verified this up to 10^12 and found no counterexamples. See the sequence A154536 for another conjecture of this sort. Sun also conjectured that any integer n>7 can be written as the sum of an odd prime, twice a positive Fibonacci number and the square of a positive Fibonacci number; this has been verified up to 2*10^8.

Examples

			For n=10 the a(10)=6 solutions are 3 + F_4 + 2F_3, 3 + F_5 + 2F_2, 3 + F_2 + 2F_4, 5 + F_2 + 2F_3, 5 + F_4 + 2F_2, 7 + F_2 + 2F_2.
		

References

  • R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36(1971), 103-107.

Crossrefs

Programs

  • Mathematica
    PQ[m_]:=m>2&&PrimeQ[m] RN[n_]:=Sum[If[PQ[n-2*Fibonacci[x]-Fibonacci[y]],1,0], {x,2,2*Log[2,Max[2,n/2]]},{y,2,2*Log[2,Max[2,n-2*Fibonacci[x]]]}] Do[Print[n," ",RN[n]];Continue,{n,1,100000}]

Formula

a(n) = |{: p+F_s+2F_t=n with p an odd prime and s,t>1}|.

A154421 Number of ways to express n as the sum of an odd prime, a positive Fibonacci number and an even Lucas number.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 3, 2, 5, 2, 5, 2, 4, 3, 4, 4, 5, 2, 6, 2, 7, 5, 7, 3, 9, 3, 9, 4, 7, 3, 6, 4, 9, 3, 10, 3, 8, 4, 6, 5, 8, 6, 8, 3, 9, 4, 8, 6, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 09 2009

Keywords

Comments

On Jan 09 2009, Zhi-Wei Sun conjectured that a(n)>0 for all n=6,7,.... ; in other words, any integer n>5 can be written in the form p+F_s+L_{3t} with p an odd prime, s positive and t nonnegative. [Compare this with the conjecture related to the sequence A154290.] Sun verified the above conjecture up to 5*10^6 and Qing-Hu Hou continued the verification up to 2*10^8. If we set v_0=2, v_1=4 and v_{n+1}=4v_n+v_{n-1} for n=1,2,3,..., then L_{3t}=v_t is at least 4^t for every t=0,1,2,.... On Jan 17 2009, D. S. McNeil found that 36930553345551 cannot be written as the sum of a prime, a Fibonacci number and an even Lucas number.

Examples

			For n=8 the a(8)=3 solutions are 3 + F_4 + L_0, 3 + F_2 + L_3, 5 + F_2 + L_0.
		

References

  • R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36(1971), 103-107.

Crossrefs

Programs

  • Mathematica
    PQ[m_]:=m>2&&PrimeQ[m] RN[n_]:=Sum[If[PQ[n-2*Fibonacci[3x+1]+Fibonacci[3x]-Fibonacci[y]],1,0], {x,0,Log[2,n]},{y,2,2*Log[2,Max[2,n-2*Fibonacci[3x+1]+Fibonacci[3x]]]}] Do[Print[n," ",RN[n]];Continue,{n,1,50000}]

Formula

a(n) = |{: p+F_s+L_{3t}=n with p an odd prime, s>1 and t nonnegative}|.

Extensions

McNeil's counterexample added by Zhi-Wei Sun, Jan 20 2009
Showing 1-3 of 3 results.