A155114 Number of ways to express n as the sum of an odd prime, a positive Fibonacci number and twice a positive Fibonacci number.
Examples
For n=10 the a(10)=6 solutions are 3 + F_4 + 2F_3, 3 + F_5 + 2F_2, 3 + F_2 + 2F_4, 5 + F_2 + 2F_3, 5 + F_4 + 2F_2, 7 + F_2 + 2F_2.
References
- R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36(1971), 103-107.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100000
- D. S. McNeil, Various and sundry (a report on Sun's conjectures)
- Zhi-Wei Sun, A promising conjecture: n=p+F_s+F_t
- Zhi-Wei Sun, A summary concerning my conjecture n=p+F_s+F_t (II)
- Terence Tao, A remark on primality testing and decimal expansions, Journal of the Australian Mathematical Society 91:3 (2011), pp. 405-413.
- K. J. Wu and Z. W. Sun, Covers of the integers with odd moduli and their applications to the forms x^m-2^n and x^2-F_{3n}/2, Math. Comp. 78 (2009) 1853-1866. arXiv:math.NT/0702382.
Crossrefs
Programs
-
Mathematica
PQ[m_]:=m>2&&PrimeQ[m] RN[n_]:=Sum[If[PQ[n-2*Fibonacci[x]-Fibonacci[y]],1,0], {x,2,2*Log[2,Max[2,n/2]]},{y,2,2*Log[2,Max[2,n-2*Fibonacci[x]]]}] Do[Print[n," ",RN[n]];Continue,{n,1,100000}]
Formula
: p+F_s+2F_t=n with p an odd prime and s,t>1}|.
Comments