A157218 Number of ways to write the n-th positive odd integer in the form p+2^x+7*2^y with p a prime congruent to 1 mod 6 and x,y positive integers.
Examples
For n=19 the a(19)=3 solutions are 2*19 - 1 = 7 + 2 + 7*2^2 = 7 + 2^4 + 7*2 = 19 + 2^2 + 7*2.
References
- R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36(1971), 103-107.
Links
- Zhi-Wei Sun, Table of n, a(n) for n=1..200000
- Z. W. Sun, Mixed sums of primes and other terms, preprint, 2009. arXiv:0901.3075
- Zhi-Wei Sun, A webpage: Mixed Sums of Primes and Other Terms, 2009.
- Zhi-Wei Sun, A project for the form p+2^x+k*2^y with k=3,5,...,61
- Zhi-Wei Sun, A promising conjecture: n=p+F_s+F_t
- Z.-W. Sun and M.-H. Le, Integers not of the form c*(2^a + 2^b) + p^{alpha}, Acta Arith. 99(2001), 183-190.
Crossrefs
Programs
-
Mathematica
PQ[x_]:=x>1&&Mod[x,6]==1&&PrimeQ[x] RN[n_]:=Sum[If[PQ[2n-1-7*2^x-2^y],1,0], {x,1,Log[2,(2n-1)/7]},{y,1,Log[2,Max[2,2n-1-7*2^x]]}] Do[Print[n," ",RN[n]],{n,1,200000}]
Formula
: p+2^x+7*2^y=2n-1 with p a prime congruent to 1 mod 6 and x,y positive integers}|.
Comments