A154337 A triangular sequence of coefficients of polynomials: p(x,n)=(3*(x - 1)^(n)*Sum[(((-1)^(n)*(2*k + 1)^(n - 1)))*x^k, {k,0, Infinity}] -(x - 1)^(n + 1)*Sum[((-1)^(n + 1)*k^n)*x^k, {k, 0, Infinity}]/x)/2.
1, 1, 1, 1, 7, 1, 1, 29, 29, 1, 1, 101, 312, 101, 1, 1, 327, 2372, 2372, 327, 1, 1, 1023, 15219, 34114, 15219, 1023, 1, 1, 3145, 88839, 381775, 381775, 88839, 3145, 1, 1, 9577, 490114, 3683815, 6934426, 3683815, 490114, 9577, 1, 1, 29003, 2610590, 32334362, 103464764, 103464764, 32334362, 2610590, 29003, 1
Offset: 0
Examples
{1}, {1, 1}, {1, 7, 1}, {1, 29, 29, 1}, {1, 101, 312, 101, 1}, {1, 327, 2372, 2372, 327, 1}, {1, 1023, 15219, 34114, 15219, 1023, 1}, {1, 3145, 88839, 381775, 381775, 88839, 3145, 1}, {1, 9577, 490114, 3683815, 6934426, 3683815, 490114, 9577, 1}, {1, 29003, 2610590, 32334362, 103464764, 103464764, 32334362, 2610590, 29003, 1}
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1274
Programs
-
Mathematica
Clear[p, x, n]; p[x_, n_] = (3*(x - 1)^(n)*Sum[(((-1)^(n)*(2*k + 1)^(n - 1)))*x^k, {k, 0, Infinity}] - (x - 1)^(n + 1)*Sum[((-1)^(n + 1)*k^n)*x^k, {k, 0,Infinity}]/x)/2; Table[FullSimplify[ExpandAll[p[x, n]]], {n, 1, 10}]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 1, 10}]; Flatten[%]
Formula
p(x,n)=(3*(x - 1)^(n)*Sum[(((-1)^(n)*(2*k + 1)^(n - 1)))*x^k, {k,0, Infinity}] -(x - 1)^(n + 1)*Sum[((-1)^(n + 1)*k^n)*x^k, {k, 0, Infinity}]/x)/2.
Functional form:
p(x,n)=(3*(-1)^n* 2^(-1 + n)* (-1 + x)^n* LerchPhi(x, 1 - n, 1/2) - (-1)^(1 + n) *(-1 + x)^(1 + n)* PolyLog( -n, x)/x)/2.
t(n,m)=Coefficients(p(x,n))
Comments