A154341 E(n,k), an additive decomposition of the Euler number (triangle read by rows).
1, 1, -1, 1, -3, 1, 1, -7, 6, 0, 1, -15, 25, 0, -6, 1, -31, 90, 0, -90, 30, 1, -63, 301, 0, -840, 630, -90, 1, -127, 966, 0, -6300, 7980, -2520, 0, 1, -255, 3025, 0, -41706, 79380, -41580, 0, 2520
Offset: 0
Examples
Triangle begins: 1, 1, -1, 1, -3, 1, 1, -7, 6, 0, 1, -15, 25, 0, -6, 1, -31, 90, 0, -90, 30, 1, -63, 301, 0, -840, 630, -90, 1, -127, 966, 0, -6300, 7980, -2520, 0, 1, -255, 3025, 0, -41706, 79380, -41580, 0, 2520, ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows
- Peter Luschny, The Swiss-Knife polynomials.
Programs
-
Maple
E := proc(n,k) local v,c; c := m -> if irem(m+1,4) = 0 then 0 else 1/((-1)^iquo(m+1,4)*2^iquo(m,2)) fi; add((-1)^(v)*binomial(k,v)*c(k)*(v+1)^n,v=0..k) end: seq(print(seq(E(n,k),k=0..n)),n=0..8);
-
Mathematica
c[m_] := If[Mod[m+1, 4] == 0, 0, 1/((-1)^Quotient[m+1, 4]*2^Quotient[m, 2])]; e[n_, k_] := Sum[(-1)^v*Binomial[k, v]*c[k]*(v+1)^n, {v, 0, k}]; Table[e[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2013, after Maple *)
Formula
Let c(k) = ((-1)^floor(k/4) / 2^floor(k/2)) * [4 not div k+1] (Iverson notation).
E(n,k) = Sum_{v=0..k} (-1)^v*binomial(k,v)*c(k)*(v+1)^n,
A122045(n) = Sum_{k=0..n} E(n,k).
Comments