cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154342 T(n,k) an additive decomposition of the signed tangent number (triangle read by rows).

Original entry on oeis.org

1, 2, -1, 4, -5, 1, 8, -19, 9, 0, 16, -65, 55, 0, -6, 32, -211, 285, 0, -120, 30, 64, -665, 1351, 0, -1470, 810, -90, 128, -2059, 6069, 0, -14280, 13020, -3150, 0
Offset: 0

Views

Author

Peter Luschny, Jan 07 2009

Keywords

Comments

The Swiss-Knife polynomials A153641 can be understood as a sum of polynomials. Evaluated at x=1 these polynomials result in a decomposition of the signed tangent numbers A009006.

Examples

			Triangle begins:
    1,
    2,    -1,
    4,    -5,    1,
    8,   -19,    9, 0,
   16,   -65,   55, 0,     -6,
   32,  -211,  285, 0,   -120,    30,
   64,  -665, 1351, 0,  -1470,   810,   -90,
  128, -2059, 6069, 0, -14280, 13020, -3150, 0,
  ...
		

Crossrefs

Programs

  • Maple
    T := proc(n,k) local v,c; c := m -> if irem(m+1,4) = 0 then 0 else 1/((-1)^iquo(m+1,4)*2^iquo(m,2)) fi; add((-1)^(v)*binomial(k,v)*c(k)*(v+2)^n,v=0..k) end: seq(print(seq(T(n,k),k=0..n)),n=0..8);
  • Mathematica
    c[m_] := If[Mod[m+1, 4] == 0, 0, 1/((-1)^Quotient[m+1, 4]*2^Quotient[m, 2])]; t[n_, k_] := Sum[(-1)^v*Binomial[k, v]*c[k]*(v+2)^n, {v, 0, k}]; Table[t[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2013, after Maple *)

Formula

Let c(k) = ((-1)^floor(k/4) / 2^floor(k/2)) * [4 not div k+1] (Iverson notation).
T(n,k) = Sum_{v=0..k} (-1)^v*binomial(k,v)*c(k)*(v+2)^n.
A155585(n) = Sum_{k=0..n} T(n,k).