A154380 The Riordan square of the Bell numbers. Triangle T(n, k), 0 <= k <= n, read by rows.
1, 1, 1, 2, 3, 1, 5, 9, 5, 1, 15, 29, 20, 7, 1, 52, 102, 77, 35, 9, 1, 203, 392, 302, 157, 54, 11, 1, 877, 1641, 1235, 683, 277, 77, 13, 1, 4140, 7451, 5324, 2987, 1329, 445, 104, 15, 1, 21147, 36525, 24329, 13391, 6230, 2340, 669, 135, 17, 1
Offset: 0
Examples
Triangle begins 1; 1, 1; 2, 3, 1; 5, 9, 5, 1; 15, 29, 20, 7, 1; 52, 102, 77, 35, 9, 1; 203, 392, 302, 157, 54, 11, 1;
Links
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) 09.7.6.
Crossrefs
Programs
-
Maple
# The function RiordanSquare is defined in A321620. RiordanSquare(add(x^k/mul(1-j*x, j=1..k), k=0..10), 10); # Peter Luschny, Dec 06 2018
-
Mathematica
RiordanSquare[gf_, len_] := Module[{T}, T[n_, k_] := T[n, k] = If[k == 0, SeriesCoefficient[gf, {x, 0, n}], Sum[T[j, k - 1] T[n - j, 0], {j, k - 1, n - 1}]]; Table[T[n, k], {n, 0, len - 1}, {k, 0, n}]]; RiordanSquare[Sum[x^k/Product[1 - j x, {j, 1, k}], {k, 0, 10}], 10] (* Jean-François Alcover, Jun 15 2019, from Maple *)
Formula
G.f.: 1/(1-(x+xy)/(1-x/(1-x/(1-2x/(1-x/(1-3x/(1-x/(1-4x/(1-... (continued fraction).
Extensions
New name by Peter Luschny, Dec 06 2018
Comments