cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154404 Number of ways to express n as the sum of an odd prime, a positive Fibonacci number and a Catalan number.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 3, 5, 5, 5, 4, 6, 5, 6, 5, 7, 6, 6, 9, 9, 8, 8, 6, 8, 10, 9, 6, 9, 7, 5, 8, 10, 8, 8, 7, 6, 9, 9, 8, 8, 7, 6, 9, 9, 13, 10, 9, 8, 12, 10, 10, 10, 9, 9, 11, 9, 11, 9, 10, 8, 11, 13, 11, 10, 12, 11, 11, 10, 10, 7, 8, 10, 14, 10, 16, 11, 9, 11, 11, 10, 12, 10, 7, 9, 16, 10, 12
Offset: 1

Views

Author

Qing-Hu Hou (hou(AT)nankai.edu.cn), Jan 09 2009, Jan 18 2009

Keywords

Comments

Motivated by Zhi-Wei Sun's conjecture that each integer n>4 can be expressed as the sum of an odd prime, an odd Fibonacci number and a positive Fibonacci number (cf. A154257), during their visit to Nanjing Univ. Qing-Hu Hou (Nankai Univ.) and Jiang Zeng (Univ. of Lyon-I) conjectured on Jan 09 2009 that a(n)>0 for every n=5,6,.... and verified this up to 5*10^8. D. S. McNeil has verified the conjecture up to 5*10^13 and Hou and Zeng have offered prizes for settling their conjecture (see Sun 2009).

Examples

			For n=7 the a(7)=3 solutions are 3+2+2, 3+3+1, 5+1+1.
		

References

  • R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36(1971), 103-107.
  • R. P. Stanley, Enumerative Combinatorics, Vol. II, Cambridge Univ. Press, 1999, Chapter 6.

Crossrefs

Programs

  • Maple
    Cata:=proc(n) binomial(2*n,n)/(n+1); end proc: Fibo:=proc(n) if n=1 then return(1); elif n=2 then return(2); else return(Fibo(n-1) + Fibo(n-2)); fi; end proc: for n from 1 to 10^3 do rep_num:=0; for i from 1 while Fibo(i) < n do for j from 1 while Fibo(i)+Cata(j) < n do p:=n-Fibo(i)-Cata(j); if (p>2) and isprime(p) then rep_num:=rep_num+1; fi; od; od; printf("%d %d\n", n, rep_num); od:
  • Mathematica
    a[n_] := (pp = {}; p = 2; While[ Prime[p] < n, AppendTo[pp, Prime[p++]] ]; ff = {}; f = 2; While[ Fibonacci[f] < n, AppendTo[ff, Fibonacci[f++]]]; cc = {}; c = 1; While[ CatalanNumber[c] < n, AppendTo[cc, CatalanNumber[c++]]]; Count[Outer[Plus, pp, ff, cc], n, 3]); Table[a[n], {n, 1, 88}] (* Jean-François Alcover, Nov 22 2011 *)
  • PARI
    a(n)=my(i=1,j,f,c,t,s);while((f=fibonacci(i++))Charles R Greathouse IV, Nov 22 2011

Formula

a(n) = |{: p+F_s+C_t=n with p an odd prime and s>1}|.

Extensions

More terms from Jon E. Schoenfield, Jan 17 2009
Added the new verification record and Hou and Zeng's prize for settling the conjecture. Edited by Zhi-Wei Sun, Feb 01 2009
Comment edited by Charles R Greathouse IV, Oct 28 2009