A154404 Number of ways to express n as the sum of an odd prime, a positive Fibonacci number and a Catalan number.
0, 0, 0, 0, 1, 2, 3, 3, 5, 5, 5, 4, 6, 5, 6, 5, 7, 6, 6, 9, 9, 8, 8, 6, 8, 10, 9, 6, 9, 7, 5, 8, 10, 8, 8, 7, 6, 9, 9, 8, 8, 7, 6, 9, 9, 13, 10, 9, 8, 12, 10, 10, 10, 9, 9, 11, 9, 11, 9, 10, 8, 11, 13, 11, 10, 12, 11, 11, 10, 10, 7, 8, 10, 14, 10, 16, 11, 9, 11, 11, 10, 12, 10, 7, 9, 16, 10, 12
Offset: 1
Examples
For n=7 the a(7)=3 solutions are 3+2+2, 3+3+1, 5+1+1.
References
- R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36(1971), 103-107.
- R. P. Stanley, Enumerative Combinatorics, Vol. II, Cambridge Univ. Press, 1999, Chapter 6.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..100000
- D. S. McNeil, Sun's strong conjecture
- Zhi-Wei Sun, A promising conjecture: n=p+F_s+F_t
- Zhi-Wei Sun, A summary concerning my conjecture n=p+F_s+F_t (II)
- Z.-W. Sun and R. Tauraso, Congruences involving Catalan numbers, arXiv:0709.1665v5.
- Zhi-Wei Sun, Mixed sums of primes and other terms, preprint, 2009
Programs
-
Maple
Cata:=proc(n) binomial(2*n,n)/(n+1); end proc: Fibo:=proc(n) if n=1 then return(1); elif n=2 then return(2); else return(Fibo(n-1) + Fibo(n-2)); fi; end proc: for n from 1 to 10^3 do rep_num:=0; for i from 1 while Fibo(i) < n do for j from 1 while Fibo(i)+Cata(j) < n do p:=n-Fibo(i)-Cata(j); if (p>2) and isprime(p) then rep_num:=rep_num+1; fi; od; od; printf("%d %d\n", n, rep_num); od:
-
Mathematica
a[n_] := (pp = {}; p = 2; While[ Prime[p] < n, AppendTo[pp, Prime[p++]] ]; ff = {}; f = 2; While[ Fibonacci[f] < n, AppendTo[ff, Fibonacci[f++]]]; cc = {}; c = 1; While[ CatalanNumber[c] < n, AppendTo[cc, CatalanNumber[c++]]]; Count[Outer[Plus, pp, ff, cc], n, 3]); Table[a[n], {n, 1, 88}] (* Jean-François Alcover, Nov 22 2011 *)
-
PARI
a(n)=my(i=1,j,f,c,t,s);while((f=fibonacci(i++))
Charles R Greathouse IV, Nov 22 2011
Formula
a(n) = |{
: p+F_s+C_t=n with p an odd prime and s>1}|.
Extensions
More terms from Jon E. Schoenfield, Jan 17 2009
Added the new verification record and Hou and Zeng's prize for settling the conjecture. Edited by Zhi-Wei Sun, Feb 01 2009
Comment edited by Charles R Greathouse IV, Oct 28 2009
Comments